Temporal escape-adaptation to eutrophication by Skeletonema marinoi

Diatoms commonly set off the spring-bloom in temperate coastal environments. However, their temporal offset may change in regions subject to nutrient enrichment, and by peaking earlier, such populations can maintain their position in the vernal plankton succession. We tested whether the marine keyst...

Full description

Bibliographic Details
Main Authors: Almen, A.-K (Author), Jaatinen, K. (Author), Olofsson, M. (Author), Scheinin, M. (Author)
Format: Article
Language:English
Published: Oxford University Press 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02885nam a2200505Ia 4500
001 10-1093-femsle-fnac011
008 220425s2022 CNT 000 0 und d
020 |a 03781097 (ISSN) 
245 1 0 |a Temporal escape-adaptation to eutrophication by Skeletonema marinoi 
260 0 |b Oxford University Press  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1093/femsle/fnac011 
520 3 |a Diatoms commonly set off the spring-bloom in temperate coastal environments. However, their temporal offset may change in regions subject to nutrient enrichment, and by peaking earlier, such populations can maintain their position in the vernal plankton succession. We tested whether the marine keystone diatom Skeletonema marinoi can accomplish this through thermal evolutionary adaptation. Eight geographically separated subpopulations, representing hydromorphologically and climatologically similar inlets displaying a range of trophic states, were compared in a common-garden experiment. At early-spring temperatures, both doubling times and variation coefficients thereof, correlated negatively with the trophic state of the environment of origin, indicating selection for fast growth due to eutrophication. At mid-spring temperatures, the relationships were reversed, indicating selection in the opposite direction. At late-spring temperatures, no significant relationships were detected, suggesting relaxed selection. Subsequent field observations reflected these findings, where blooming temperatures decreased with trophic state. Natural selection thus moves along with eutrophication towards colder temperatures earlier in the spring, favouring genotypes with the capacity to grow fast. The thermal niche shift demonstrated herein may be an evolutionary mechanism essentially leading to trophic changes in the local ecosystem. © 2022 The Author(s). Published by Oxford University Press on behalf of FEMS. 
650 0 4 |a article 
650 0 4 |a Baltic Sea 
650 0 4 |a Baltic Sea 
650 0 4 |a climate change 
650 0 4 |a climate change 
650 0 4 |a diatom 
650 0 4 |a diatoms 
650 0 4 |a Diatoms 
650 0 4 |a ecosystem 
650 0 4 |a Ecosystem 
650 0 4 |a elevated temperatures 
650 0 4 |a eutrophication 
650 0 4 |a eutrophication 
650 0 4 |a eutrophication 
650 0 4 |a Eutrophication 
650 0 4 |a evolutionary adaptation 
650 0 4 |a genetics 
650 0 4 |a genotype 
650 0 4 |a natural selection 
650 0 4 |a nonhuman 
650 0 4 |a phytoplankton 
650 0 4 |a Phytoplankton 
650 0 4 |a plankton 
650 0 4 |a Plankton 
650 0 4 |a resting stages 
650 0 4 |a Skeletonema marinoi 
650 0 4 |a spring 
650 0 4 |a trophic level 
700 1 |a Almen, A.-K.  |e author 
700 1 |a Jaatinen, K.  |e author 
700 1 |a Olofsson, M.  |e author 
700 1 |a Scheinin, M.  |e author 
773 |t FEMS Microbiology Letters