Bone Mineralization and Spinal Fusion Evaluation of a Truss-based Interbody Fusion Device: Ovine Finite Element Analysis with Confirmatory in Vivo Outcomes

Study Design.Finite element analysis (FEA) and in vivo ovine spinal interbody fusion study.Objective.To determine comparative load-induced strain amplitudes, bone mineralization and fusion outcomes associated with different diameter struts in a truss-based interbody fusion device.Summary of Backgrou...

Full description

Bibliographic Details
Main Authors: Atkinson, B.L (Author), Block, J.E (Author), Kiapour, A. (Author), Lalor, P.A (Author), Seim, H.B (Author)
Format: Article
Language:English
Published: Lippincott Williams and Wilkins 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03501nam a2200469Ia 4500
001 10-1097-BRS-0000000000004256
008 220420s2022 CNT 000 0 und d
020 |a 03622436 (ISSN) 
245 1 0 |a Bone Mineralization and Spinal Fusion Evaluation of a Truss-based Interbody Fusion Device: Ovine Finite Element Analysis with Confirmatory in Vivo Outcomes 
260 0 |b Lippincott Williams and Wilkins  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1097/BRS.0000000000004256 
520 3 |a Study Design.Finite element analysis (FEA) and in vivo ovine spinal interbody fusion study.Objective.To determine comparative load-induced strain amplitudes, bone mineralization and fusion outcomes associated with different diameter struts in a truss-based interbody fusion device.Summary of Background Data.Additive manufacturing technology has been employed to develop implants that actively participate in the fusion process. The truss device enables the optimal transfer of compressive and tensile stresses via the struts. Mechanobiologic principles postulate that strut diameter can be regulated to allow different magnitudes of strain distribution within the struts which may affect fusion rates.Methods.Modeling of strain distributions as a function of strut diameter (0.75, 1.0, 1.25, and 1.5 mm) employed FEA that simulated physiologic loading conditions. A confirmatory in vivo ovine lumbar spinal interbody fusion study compared fusion scores and bone histomorphometric variables for cages with 0.75 and 1.5 mm strut diameters. Outcomes were compared at 3-, 6-, and 12-month follow-up intervals.Results.FEA showed an inverse association between strut diameter and peak strain amplitude. Cages with 1.0, 1.25, and 1.5 mm struts had peak strain values that were 36%, 60%, and 73% lower than the 0.75 mm strut strain value. In vivo results showed the mean fusion score for the 0.75 mm diameter strut cage was significantly greater by 3-months versus the 1.5 mm strut cage, and remained significantly higher at each subsequent interval (P < 0.001 for all comparisons). Fusion rates were 95%, 100%, and 100% (0.75 mm) and 72.7%, 86.4%, and 95.8% (1.5 mm) at 3, 6, and 12 months. Thinner struts had greater mineralized bone tissue and less fibrous/chondral tissue than the thicker struts at each follow-up.Conclusion.Validating FEA estimates, cages with smaller diameter struts exhibited more rapid fusion consolidation and more aggressive osseointegration compared with cages with larger diameters struts.Level of Evidence: 4. © 2022 Lippincott Williams and Wilkins. All rights reserved. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Biomechanical Phenomena 
650 0 4 |a biomechanics 
650 0 4 |a bone mineralization 
650 0 4 |a Calcification, Physiologic 
650 0 4 |a disc degeneration 
650 0 4 |a finite element analysis 
650 0 4 |a Finite Element Analysis 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a interbody fusion cage 
650 0 4 |a lumbar vertebra 
650 0 4 |a Lumbar Vertebrae 
650 0 4 |a mechanobiology 
650 0 4 |a osseointegration 
650 0 4 |a ovine 
650 0 4 |a procedures 
650 0 4 |a sheep 
650 0 4 |a Sheep 
650 0 4 |a Spinal Fusion 
650 0 4 |a spine fusion 
650 0 4 |a surgery 
650 0 4 |a truss 
700 1 0 |a Atkinson, B.L.  |e author 
700 1 0 |a Block, J.E.  |e author 
700 1 0 |a Kiapour, A.  |e author 
700 1 0 |a Lalor, P.A.  |e author 
700 1 0 |a Seim, H.B.  |e author 
773 |t Spine