Volumetric Scalability of Microfluidic and Semi-Batch Silk Nanoprecipitation Methods

Silk fibroin nanoprecipitation by organic desolvation in semi-batch and microfluidic formats provides promising bottom-up routes for manufacturing narrow polydispersity, spherical silk nanoparticles. The translation of silk nanoparticle production to pilot, clinical, and industrial scales can be aid...

Full description

Bibliographic Details
Main Authors: Matthew, S.A.L (Author), Perrie, Y. (Author), Rezwan, R. (Author), Seib, F.P (Author)
Format: Article
Language:English
Published: NLM (Medline) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02804nam a2200385Ia 4500
001 10-3390-molecules27072368
008 220425s2022 CNT 000 0 und d
020 |a 14203049 (ISSN) 
245 1 0 |a Volumetric Scalability of Microfluidic and Semi-Batch Silk Nanoprecipitation Methods 
260 0 |b NLM (Medline)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/molecules27072368 
520 3 |a Silk fibroin nanoprecipitation by organic desolvation in semi-batch and microfluidic formats provides promising bottom-up routes for manufacturing narrow polydispersity, spherical silk nanoparticles. The translation of silk nanoparticle production to pilot, clinical, and industrial scales can be aided through insight into the property drifts incited by nanoprecipitation scale-up and the identification of critical process parameters to maintain throughout scaling. Here, we report the reproducibility of silk nanoprecipitation on volumetric scale-up in low-shear, semi-batch systems and estimate the reproducibility of chip parallelization for volumetric scale-up in a high shear, staggered herringbone micromixer. We showed that silk precursor feeds processed in an unstirred semi-batch system (mixing time > 120 s) displayed significant changes in the nanoparticle physicochemical and crystalline properties following a 12-fold increase in volumetric scale between 1.8 and 21.9 mL while the physicochemical properties stayed constant following a further 6-fold increase in scale to 138 mL. The nanoparticle physicochemical properties showed greater reproducibility after a 6-fold volumetric scale-up when using lower mixing times of greater similarity (8.4 s and 29.4 s) with active stirring at 400 rpm, indicating that the bulk mixing time and average shear rate should be maintained during volumetric scale-up. Conversely, microfluidic manufacture showed high between-batch repeatability and between-chip reproducibility across four participants and microfluidic chips, thereby strengthening chip parallelization as a production strategy for silk nanoparticles at pilot, clinical, and industrial scales. 
650 0 4 |a chemistry 
650 0 4 |a fibroin 
650 0 4 |a Fibroins 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a microfluidics 
650 0 4 |a microfluidics 
650 0 4 |a Microfluidics 
650 0 4 |a nanoparticle 
650 0 4 |a Nanoparticles 
650 0 4 |a nanoprecipitation 
650 0 4 |a reproducibility 
650 0 4 |a Reproducibility of Results 
650 0 4 |a scalable manufacture 
650 0 4 |a semi-batch 
650 0 4 |a silk 
650 0 4 |a Silk 
650 0 4 |a silk fibroin 
700 1 |a Matthew, S.A.L.  |e author 
700 1 |a Perrie, Y.  |e author 
700 1 |a Rezwan, R.  |e author 
700 1 |a Seib, F.P.  |e author 
773 |t Molecules (Basel, Switzerland)