An Ultra-High-Resolution Bending Temperature Decoupled Measurement Sensor Based on a Novel Core Refractive Index-Like Linear Distribution Doped Fiber

A high-resolution and high-sensitivity fiber optic sensor based on the quasi-linear distribution of the core refractive index is designed and fabricated, which enables decouple measurement of bending and of temperature. First, single-mode fiber doped with Al2O3, Y2O3, and P2O5 was drawn through a fi...

Full description

Bibliographic Details
Main Authors: Fan, L. (Author), Hu, X. (Author), Kong, L. (Author), Wang, Z. (Author), Wu, D. (Author), Zhang, Y. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02689nam a2200481Ia 4500
001 10-3390-s22083007
008 220425s2022 CNT 000 0 und d
020 |a 14248220 (ISSN) 
245 1 0 |a An Ultra-High-Resolution Bending Temperature Decoupled Measurement Sensor Based on a Novel Core Refractive Index-Like Linear Distribution Doped Fiber 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/s22083007 
520 3 |a A high-resolution and high-sensitivity fiber optic sensor based on the quasi-linear distribution of the core refractive index is designed and fabricated, which enables decouple measurement of bending and of temperature. First, single-mode fiber doped with Al2O3, Y2O3, and P2O5 was drawn through a fiber drawing tower. The fiber grating was engraved on the fiber by a femtosecond laser. Modeling analysis was conducted from quantum theory. Experimental results show that the bending sensitivity of the grating can reach 21.85 dB/m−1, which is larger than the reported sensitivity of similar sensors. In the high temperature range from room temperature to 1000◦C, the temperature sensitivity was 14.1 pm/◦C. The doped grating sensor can achieve high temperature measurement without annealing, and it has a distinguished linear response from low temperature to high temperature. The bending resolution can reach 0.0004 m−1, and the temperature resolution can reach 0.007◦C. Two-parameter decoupling measurement can be realized according to the distinctive characteristic trends of the spectrum. What’s more, the sensor exhibits excellent stability and a fast response time. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a Alumina 
650 0 4 |a Aluminum oxide 
650 0 4 |a bending sensor 
650 0 4 |a Bending sensors 
650 0 4 |a decoupling measurement 
650 0 4 |a Decoupling measurement 
650 0 4 |a Decouplings 
650 0 4 |a Doped fiber 
650 0 4 |a Fiber optic sensors 
650 0 4 |a Fibre-optic sensor 
650 0 4 |a high resolution 
650 0 4 |a High resolution 
650 0 4 |a High sensitivity 
650 0 4 |a Linear distribution 
650 0 4 |a Measurement sensor 
650 0 4 |a Quantum theory 
650 0 4 |a Refractive index 
650 0 4 |a Single mode fibers 
650 0 4 |a Temperature 
650 0 4 |a Temperature measurement 
650 0 4 |a temperature sensor 
650 0 4 |a Temperature sensors 
650 0 4 |a Ultrahigh resolution 
700 1 |a Fan, L.  |e author 
700 1 |a Hu, X.  |e author 
700 1 |a Kong, L.  |e author 
700 1 |a Wang, Z.  |e author 
700 1 |a Wu, D.  |e author 
700 1 |a Zhang, Y.  |e author 
700 1 |a Zhang, Y.  |e author 
773 |t Sensors