An Estimation of the Discharge Exponent of a Drip Irrigation Emitter by Response Surface Methodology and Machine Learning

The discharge exponent is a general index used to evaluate the hydraulic performance of emitters, which is affected by emitters’ structural parameters. Accurately estimating the effect of change in structural parameters on the discharge exponent is critical for the design and optimization of emitter...

Full description

Bibliographic Details
Main Authors: Chen, X. (Author), He, K. (Author), Wei, Z. (Author)
Format: Article
Language:English
Published: MDPI 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02936nam a2200493Ia 4500
001 10-3390-w14071034
008 220425s2022 CNT 000 0 und d
020 |a 20734441 (ISSN) 
245 1 0 |a An Estimation of the Discharge Exponent of a Drip Irrigation Emitter by Response Surface Methodology and Machine Learning 
260 0 |b MDPI  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3390/w14071034 
520 3 |a The discharge exponent is a general index used to evaluate the hydraulic performance of emitters, which is affected by emitters’ structural parameters. Accurately estimating the effect of change in structural parameters on the discharge exponent is critical for the design and optimization of emitters. In this research, the response surface methodology (RSM) and two machine learning models, the artificial neural network (ANN) and support vector regression (SVR), are used to predict the discharge exponent of tooth-shaped labyrinth channel emitters. The input parameters consist of the number of channel units (N), channel depth (D), tooth angle (α), tooth height (H) and channel width (W). The applied models are assessed through the coefficient of determination (R2 ), root-mean-square error (RMSE) and mean absolute error (MAE). The analysis of variance shows that tooth height had the greatest effect on the discharge exponent. Statistical criteria indicate that among the three models, the SVR model has the highest prediction accuracy and the best robustness with an average R2 of 0.9696, an average RMSE of 0.0037 and an average MAE of 0.0031. The SVR model can quickly and accurately simulate the discharge exponent of emitters, which is conducive to the rapid design of the emitter. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. 
650 0 4 |a artificial neural network 
650 0 4 |a artificial neural network 
650 0 4 |a drip irrigation 
650 0 4 |a error correction 
650 0 4 |a estimation method 
650 0 4 |a hydraulic performance 
650 0 4 |a Hydraulic performance 
650 0 4 |a instrumentation 
650 0 4 |a Irrigation 
650 0 4 |a labyrinth channel emitter 
650 0 4 |a Labyrinth channel emitter 
650 0 4 |a Labyrinth channels 
650 0 4 |a machine learning 
650 0 4 |a Machine learning 
650 0 4 |a Mean absolute error 
650 0 4 |a Mean square error 
650 0 4 |a Neural networks 
650 0 4 |a parameter estimation 
650 0 4 |a response surface methodology 
650 0 4 |a Response-surface methodology 
650 0 4 |a Root mean square errors 
650 0 4 |a Structural parameter 
650 0 4 |a support vector machine 
650 0 4 |a support vector regression 
650 0 4 |a Support vector regression models 
650 0 4 |a Support vector regressions 
650 0 4 |a Surface properties 
650 0 4 |a Tooth heights 
700 1 |a Chen, X.  |e author 
700 1 |a He, K.  |e author 
700 1 |a Wei, Z.  |e author 
773 |t Water (Switzerland)