Bayesian l0-regularized least squares

Bayesian l0-regularized least squares is a variable selection technique for high-dimensional predictors. The challenge is optimizing a nonconvex objective function via search over model space consisting of all possible predictor combinations. Spike-and-slab (aka Bernoulli-Gaussian) priors are the go...

Full description

Bibliographic Details
Main Authors: Polson, N.G (Author), Sun, L. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Ltd 2019
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01818nam a2200253Ia 4500
001 10.1002-asmb.2381
008 220511s2019 CNT 000 0 und d
020 |a 15241904 (ISSN) 
245 1 0 |a Bayesian l0-regularized least squares 
260 0 |b John Wiley and Sons Ltd  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/asmb.2381 
520 3 |a Bayesian l0-regularized least squares is a variable selection technique for high-dimensional predictors. The challenge is optimizing a nonconvex objective function via search over model space consisting of all possible predictor combinations. Spike-and-slab (aka Bernoulli-Gaussian) priors are the gold standard for Bayesian variable selection, with a caveat of computational speed and scalability. Single best replacement (SBR) provides a fast scalable alternative. We provide a link between Bayesian regularization and proximal updating, which provides an equivalence between finding a posterior mode and a posterior mean with a different regularization prior. This allows us to use SBR to find the spike-and-slab estimator. To illustrate our methodology, we provide simulation evidence and a real data example on the statistical properties and computational efficiency of SBR versus direct posterior sampling using spike-and-slab priors. Finally, we conclude with directions for future research. © 2018 John Wiley & Sons, Ltd. 
650 0 4 |a Bayesian variable selection 
650 0 4 |a Computational efficiency 
650 0 4 |a l0 regularization 
650 0 4 |a L0- regularizations 
650 0 4 |a proximal updating 
650 0 4 |a Sampling 
650 0 4 |a single best replacement 
650 0 4 |a sparsity 
650 0 4 |a spike-and-slab prior 
700 1 |a Polson, N.G.  |e author 
700 1 |a Sun, L.  |e author 
773 |t Applied Stochastic Models in Business and Industry