Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration

Enzymatic reduction of carbon dioxide (CO2) to methanol (CH3OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regene...

Full description

Bibliographic Details
Main Authors: Marpani, F. (Author), Meyer, A.S (Author), Pinelo, M. (Author), Sárossy, Z. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc. 2017
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 04492nam a2200937Ia 4500
001 10.1002-bit.26405
008 220120s2017 CNT 000 0 und d
020 |a 00063592 (ISSN) 
245 1 0 |a Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration 
260 0 |b John Wiley and Sons Inc.  |c 2017 
520 3 |a Enzymatic reduction of carbon dioxide (CO2) to methanol (CH3OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced regeneration of the reducing equivalents during reaction is required. Herein, we report the optimization of the enzymatic conversion of formaldehyde (CHOH) to CH3OH by alcohol dehydrogenase, the final step of the enzymatic redox reaction of CO2 to CH3OH, with kinetically synchronous enzymatic cofactor regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization experiments were conducted to verify the kinetically modeled results. Repetitive reaction cycles were shown to enhance the yield of CH3OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes to high concentrations of CHOH. System II was found to be superior to System I with a yield of 8 mM CH3OH, a TTN of 160 and BPR of 24 μmol CH3OH/U · h during 6 hr of reaction. The study demonstrates that an optimal reaction set-up could be designed from rational kinetics modeling to maximize the yield of CH3OH, whilst simultaneously optimizing cofactor recycling and enzyme utilization efficiency. © 2017 Wiley Periodicals, Inc. 
650 0 4 |a alcohol dehydrogenase 
650 0 4 |a Alcohol dehydrogenase 
650 0 4 |a Alcohol Dehydrogenase 
650 0 4 |a Alcohol Oxidoreductases 
650 0 4 |a Article 
650 0 4 |a Carbon 
650 0 4 |a Carbon dioxide 
650 0 4 |a catalysis 
650 0 4 |a Catalysis 
650 0 4 |a chemical model 
650 0 4 |a chemistry 
650 0 4 |a coenzyme 
650 0 4 |a Coenzymes 
650 0 4 |a cofactors 
650 0 4 |a Cofactors 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a controlled study 
650 0 4 |a D-xylose dehydrogenase 
650 0 4 |a Efficiency 
650 0 4 |a Enzymatic conversions 
650 0 4 |a enzyme activation 
650 0 4 |a Enzyme Activation 
650 0 4 |a enzyme catalysis 
650 0 4 |a Enzyme catalysis 
650 0 4 |a enzyme kinetics 
650 0 4 |a Enzyme kinetics 
650 0 4 |a enzyme specificity 
650 0 4 |a Enzymes 
650 0 4 |a formaldehyde 
650 0 4 |a Formaldehyde 
650 0 4 |a Glucose 
650 0 4 |a Glucose 1-Dehydrogenase 
650 0 4 |a glucose dehydrogenase 
650 0 4 |a Glucose dehydrogenase 
650 0 4 |a isolation and purification 
650 0 4 |a kinetics 
650 0 4 |a Kinetics 
650 0 4 |a mathematical model 
650 0 4 |a methanol 
650 0 4 |a Methanol 
650 0 4 |a Models, Chemical 
650 0 4 |a nonhuman 
650 0 4 |a Nucleotides 
650 0 4 |a Optimization 
650 0 4 |a oxidation reduction reaction 
650 0 4 |a Oxidation-Reduction 
650 0 4 |a oxidoreductase 
650 0 4 |a process optimization 
650 0 4 |a Reaction kinetics 
650 0 4 |a reaction optimization 
650 0 4 |a Reaction optimization 
650 0 4 |a Recycling 
650 0 4 |a Redox reactions 
650 0 4 |a Reduced pyridine nucleotides 
650 0 4 |a reduction (chemistry) 
650 0 4 |a regeneration 
650 0 4 |a Regeneration 
650 0 4 |a Substrate Specificity 
650 0 4 |a synthesis 
650 0 4 |a turnover number 
650 0 4 |a unclassified drug 
650 0 4 |a xylose dehydrogenase 
700 1 0 |a Marpani, F.  |e author 
700 1 0 |a Meyer, A.S.  |e author 
700 1 0 |a Pinelo, M.  |e author 
700 1 0 |a Sárossy, Z.  |e author 
773 |t Biotechnology and Bioengineering  |x 00063592 (ISSN)  |g 114 12, 2762-2770 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/bit.26405 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85029300553&doi=10.1002%2fbit.26405&partnerID=40&md5=b5e9ba12fef54328c96127442b9c8d54