CRISPR-Cas9 Based Genome Editing in Wheat

The development and application of high precision genome editing tools such as programmable nucleases are set to revolutionize crop breeding and are already having a major impact on fundamental science. Clustered regularly interspaced short palindromic repeats (CRISPR), and its CRISPR-associated pro...

Full description

Bibliographic Details
Main Authors: Clarke, M. (Author), Harwood, W.A (Author), Hayta, S. (Author), Smedley, M.A (Author)
Format: Article
Language:English
Published: Blackwell Publishing Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03480nam a2200637Ia 4500
001 10.1002-cpz1.65
008 220427s2021 CNT 000 0 und d
020 |a 26911299 (ISSN) 
245 1 0 |a CRISPR-Cas9 Based Genome Editing in Wheat 
260 0 |b Blackwell Publishing Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/cpz1.65 
520 3 |a The development and application of high precision genome editing tools such as programmable nucleases are set to revolutionize crop breeding and are already having a major impact on fundamental science. Clustered regularly interspaced short palindromic repeats (CRISPR), and its CRISPR-associated protein (Cas), is a programmable RNA-guided nuclease enabling targeted site-specific double stranded breaks in DNA which, when incorrectly repaired, result in gene knockout. The two most widely cultivated wheat types are the tetraploid durum wheat (Triticum turgidum ssp. durum L.) and the hexaploid bread wheat (Triticum aestivum L.). Both species have large genomes, as a consequence of ancient hybridization events between ancestral progenitors. The highly conserved gene sequence and structure of homoeologs among subgenomes in wheat often permits their simultaneous targeting using CRISPR-Cas9 with single or paired single guide RNA (sgRNA). Since its first successful deployment in wheat, CRISPR-Cas9 technology has been applied to a wide array of gene targets of agronomical and scientific importance. The following protocols describe an experimentally derived strategy for implementing CRISRP-Cas9 genome editing, including sgRNA design, Golden Gate construct assembly, and screening analysis for genome edits. © 2021 The Authors. Basic Protocol 1: Selection of sgRNA target sequence for CRISPR-Cas9. Basic Protocol 2: Construct assembly using Golden Gate (MoClo) assembly. Basic Protocol 3: Screening for CRISPR-Cas9 genome edits. Alternate Protocol: BigDye Terminator reactions for screening of CRISPR-Cas9 genome edits. © 2021 The Authors. 
650 0 4 |a amplicon 
650 0 4 |a Article 
650 0 4 |a Cas9 
650 0 4 |a clustered regularly interspaced short palindromic repeat 
650 0 4 |a clustered regularly interspaced short palindromic repeat 
650 0 4 |a Clustered Regularly Interspaced Short Palindromic Repeats 
650 0 4 |a conserved sequence 
650 0 4 |a controlled study 
650 0 4 |a CRISPR 
650 0 4 |a CRISPR associated endonuclease Cas9 
650 0 4 |a CRISPR Cas system 
650 0 4 |a CRISPR-Cas Systems 
650 0 4 |a CRISPR-CAS9 system 
650 0 4 |a crop production 
650 0 4 |a double stranded DNA break 
650 0 4 |a gene editing 
650 0 4 |a Gene Editing 
650 0 4 |a gene knockout 
650 0 4 |a gene sequence 
650 0 4 |a gene structure 
650 0 4 |a genetic analysis 
650 0 4 |a genetics 
650 0 4 |a genome editing 
650 0 4 |a Golden Gate assembly 
650 0 4 |a guide RNA 
650 0 4 |a hexaploidy 
650 0 4 |a hybridization 
650 0 4 |a knockout 
650 0 4 |a nonhuman 
650 0 4 |a plant breeding 
650 0 4 |a Plant Breeding 
650 0 4 |a plant genome 
650 0 4 |a priority journal 
650 0 4 |a Sanger sequencing 
650 0 4 |a Triticum 
650 0 4 |a Triticum aestivum 
650 0 4 |a Triticum turgidum 
650 0 4 |a wheat 
650 0 4 |a wheat 
700 1 |a Clarke, M.  |e author 
700 1 |a Harwood, W.A.  |e author 
700 1 |a Hayta, S.  |e author 
700 1 |a Smedley, M.A.  |e author 
773 |t Current Protocols