Forging Inspired Processing of Sodium-Fluorinated Graphene Composite as Dendrite-Free Anode for Long-Life Na–CO2 Cells

Na–CO2 batteries recently are emerging as promising energy-storage devices due to the abundance of Na in the earth's crust and the clean utilization of greenhouse gas CO2. However, similar to metallic Li, metallic Na also suffers from a serious issue of dendrite growth upon repeated cycling, wh...

Full description

Bibliographic Details
Main Authors: Chen, X. (Author), Cheng, H. (Author), Lu, Y. (Author), Mao, Y. (Author), Tu, J. (Author), Xie, J. (Author), Xu, X. (Author), Zhang, T. (Author), Zhao, X. (Author), Zhu, T. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03159nam a2200577Ia 4500
001 10.1002-eem2.12191
008 220517s2022 CNT 000 0 und d
020 |a 25750348 (ISSN) 
245 1 0 |a Forging Inspired Processing of Sodium-Fluorinated Graphene Composite as Dendrite-Free Anode for Long-Life Na–CO2 Cells 
260 0 |b John Wiley and Sons Inc  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/eem2.12191 
520 3 |a Na–CO2 batteries recently are emerging as promising energy-storage devices due to the abundance of Na in the earth's crust and the clean utilization of greenhouse gas CO2. However, similar to metallic Li, metallic Na also suffers from a serious issue of dendrite growth upon repeated cycling, while a facile method to solve this issue is still lacking. In this work, we report an effective, environmentally friendly method to inhibit Na dendrite growth by in situ constructing a stable, NaF-rich solid electrolyte interface (SEI) layer on metallic Na via adding a small amount (~3 wt%) of fluorinated graphene (FG) in bulk Na. Inspired by the forging processing, a uniform Na/FG composite was obtained by melting and repetitive FG-adsorbing/hammering processes. The Na/FG–Na/FG half cell exhibits a low voltage hysteresis of 110–140 mV over 700 h at a current density up to 5 mA cm−2 with an areal capacity as high as 5 mAh cm−2. Na–CO2 full cell with the Na/FG anode is able to sustain a stable cycling of 391 cycles at a limited capacity of 1000 mAh g−1. Long cycle life of the cell can be attributed to the protecting effect of the in situ fabricated NaF-rich SEI layer on metallic Na. Both experiments and density functional theory (DFT) calculations confirm the formation of the NaF-rich SEI layer. The inhibition effect of the NaF-rich SEI layer for Na dendrites is verified by in situ optical microscopy observations. © 2021 Zhengzhou University. 
650 0 4 |a Anodes 
650 0 4 |a Carbon dioxide 
650 0 4 |a Cells 
650 0 4 |a composite anode 
650 0 4 |a Cytology 
650 0 4 |a Dendrite growth 
650 0 4 |a Density functional theory 
650 0 4 |a Earth's crust 
650 0 4 |a Energy storage 
650 0 4 |a Facile method 
650 0 4 |a fluorinated graphene 
650 0 4 |a Forging 
650 0 4 |a Graphene 
650 0 4 |a Graphene composites 
650 0 4 |a Greenhouse gases 
650 0 4 |a Inhibition effect 
650 0 4 |a Limited capacity 
650 0 4 |a Low voltages 
650 0 4 |a Na dendrite 
650 0 4 |a Na–CO2 battery 
650 0 4 |a NaF-rich protecting layer 
650 0 4 |a Phase interfaces 
650 0 4 |a Sodium 
650 0 4 |a Sodium compounds 
650 0 4 |a Sodium metallography 
650 0 4 |a Solid electrolyte interfaces 
650 0 4 |a Solid electrolytes 
650 0 4 |a Structural geology 
700 1 |a Chen, X.  |e author 
700 1 |a Cheng, H.  |e author 
700 1 |a Lu, Y.  |e author 
700 1 |a Mao, Y.  |e author 
700 1 |a Tu, J.  |e author 
700 1 |a Xie, J.  |e author 
700 1 |a Xu, X.  |e author 
700 1 |a Zhang, T.  |e author 
700 1 |a Zhao, X.  |e author 
700 1 |a Zhu, T.  |e author 
773 |t Energy and Environmental Materials