An improved method for signal de-noising based on multi-level local mean decomposition

The product functions (PFs) extracted by local mean decomposition (LMD) of the noisy signal contain obvious energy-concentrated pulses. As a result, the conventional amplitude threshold filtering used in wavelet transform (WT)-based and empirical mode decomposition (EMD)-based de-noising methods is...

Full description

Bibliographic Details
Main Authors: Chen, H. (Author), Jiang, Y. (Author), Jiao, W. (Author), Sun, J. (Author), Tang, C. (Author), Wang, C. (Author), Xia, H. (Author), Xu, C. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02711nam a2200505Ia 4500
001 10.1002-eng2.12677
008 230526s2023 CNT 000 0 und d
020 |a 25778196 (ISSN) 
245 1 0 |a An improved method for signal de-noising based on multi-level local mean decomposition 
260 0 |b John Wiley and Sons Inc  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/eng2.12677 
520 3 |a The product functions (PFs) extracted by local mean decomposition (LMD) of the noisy signal contain obvious energy-concentrated pulses. As a result, the conventional amplitude threshold filtering used in wavelet transform (WT)-based and empirical mode decomposition (EMD)-based de-noising methods is no longer applicable. To address this issue, an improved signal de-noising method is proposed by using the multi-level local mean decomposition (ML-LMD), the superposition and recombination (SR) of high-order PFs, the outlier detection, and waveform smoothing (OD-WS) to remove noise by eliminating the pulse components. The proposed method's superior noise reduction performance is demonstrated through theoretical analysis and experimental verification. Compared to well-known methods like WT-based and EMD-based de-noising, the results show that the proposed method has significant comparative advantages in reducing noise in rolling bearing signals. © 2023 The Authors. Engineering Reports published by John Wiley & Sons Ltd. 
650 0 4 |a Anomaly detection 
650 0 4 |a dual-pulse characteristic 
650 0 4 |a Dual-pulse characteristic 
650 0 4 |a Dual-pulses 
650 0 4 |a empirical mode decomposition 
650 0 4 |a Empirical mode decomposition 
650 0 4 |a Empirical Mode Decomposition 
650 0 4 |a Local mean decompositions 
650 0 4 |a multi-level local mean decomposition 
650 0 4 |a Multi-level local mean decomposition 
650 0 4 |a Multilevels 
650 0 4 |a Outlier Detection 
650 0 4 |a outlier detection and waveform smoothing 
650 0 4 |a Outlier detection and waveform smoothing 
650 0 4 |a Pulse characteristics 
650 0 4 |a Roller bearings 
650 0 4 |a signal de-noising 
650 0 4 |a Signal denoising 
650 0 4 |a Signal de-noising 
650 0 4 |a Statistics 
650 0 4 |a the superposition and recombination 
650 0 4 |a The superposition and recombination 
650 0 4 |a Waveform smoothing 
650 0 4 |a Wavelet decomposition 
700 1 0 |a Chen, H.  |e author 
700 1 0 |a Jiang, Y.  |e author 
700 1 0 |a Jiao, W.  |e author 
700 1 0 |a Sun, J.  |e author 
700 1 0 |a Tang, C.  |e author 
700 1 0 |a Wang, C.  |e author 
700 1 0 |a Xia, H.  |e author 
700 1 0 |a Xu, C.  |e author 
773 |t Engineering Reports  |x 25778196 (ISSN)