Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data

Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs-functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fracti...

Full description

Bibliographic Details
Main Authors: Biswal, B. (Author), Dammers, J. (Author), Farrher, E. (Author), Herzog, H. (Author), Langen, K.-J (Author), Lerche, C. (Author), Mauler, J. (Author), Neuner, I. (Author), Rajkumar, R. (Author), Régio Brambilla, C. (Author), Rota Kops, E. (Author), Scheins, J. (Author), Shah, N.J (Author), Sripad, P. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04526nam a2200901Ia 4500
001 10.1002-hbm.24429
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Comparison of EEG microstates with resting state fMRI and FDG-PET measures in the default mode network via simultaneously recorded trimodal (PET/MR/EEG) data 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.24429 
520 3 |a Simultaneous trimodal positron emission tomography/magnetic resonance imaging/electroencephalography (PET/MRI/EEG) resting state (rs) brain data were acquired from 10 healthy male volunteers. The rs-functional MRI (fMRI) metrics, such as regional homogeneity (ReHo), degree centrality (DC) and fractional amplitude of low-frequency fluctuations (fALFFs), as well as 2-[18F]fluoro-2-desoxy-d-glucose (FDG)-PET standardised uptake value (SUV), were calculated and the measures were extracted from the default mode network (DMN) regions of the brain. Similarly, four microstates for each subject, showing the diverse functional states of the whole brain via topographical variations due to global field power (GFP), were estimated from artefact-corrected EEG signals. In this exploratory analysis, the GFP of microstates was nonparametrically compared to rs-fMRI metrics and FDG-PET SUV measured in the DMN of the brain. The rs-fMRI metrics (ReHO, fALFF) and FDG-PET SUV did not show any significant correlations with any of the microstates. The DC metric showed a significant positive correlation with microstate C (rs = 0.73, p =.01). FDG-PET SUVs indicate a trend for a negative correlation with microstates A, B and C. The positive correlation of microstate C with DC metrics suggests a functional relationship between cortical hubs in the frontal and occipital lobes. The results of this study suggest further exploration of this method in a larger sample and in patients with neuropsychiatric disorders. The aim of this exploratory pilot study is to lay the foundation for the development of such multimodal measures to be applied as biomarkers for diagnosis, disease staging, treatment response and monitoring of neuropsychiatric disorders. © 2018 Wiley Periodicals, Inc. 
650 0 4 |a 18F-FDG 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a Article 
650 0 4 |a artifact 
650 0 4 |a biological marker 
650 0 4 |a biomarkers 
650 0 4 |a Biomarkers 
650 0 4 |a brain cortex 
650 0 4 |a Cerebral Cortex 
650 0 4 |a comparative study 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a controlled study 
650 0 4 |a data analysis software 
650 0 4 |a default mode network 
650 0 4 |a Default Mode Network 
650 0 4 |a diagnostic imaging 
650 0 4 |a electroencephalography 
650 0 4 |a electroencephalography 
650 0 4 |a electroencephalography 
650 0 4 |a Electroencephalography 
650 0 4 |a exploratory research 
650 0 4 |a fluorodeoxyglucose f 18 
650 0 4 |a fMRI 
650 0 4 |a fractional amplitude of low-frequency fluctuation 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a image processing 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a male 
650 0 4 |a mental disease 
650 0 4 |a multimodal imaging 
650 0 4 |a multimodal imaging 
650 0 4 |a multimodal imaging 
650 0 4 |a Multimodal Imaging 
650 0 4 |a normal human 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a occipital lobe 
650 0 4 |a physiology 
650 0 4 |a pilot study 
650 0 4 |a positron emission tomography 
650 0 4 |a positron emission tomography 
650 0 4 |a positron emission tomography 
650 0 4 |a Positron-Emission Tomography 
650 0 4 |a procedures 
650 0 4 |a resting state network 
650 0 4 |a standardized uptake value 
650 0 4 |a treatment response 
700 1 |a Biswal, B.  |e author 
700 1 |a Dammers, J.  |e author 
700 1 |a Farrher, E.  |e author 
700 1 |a Herzog, H.  |e author 
700 1 |a Langen, K.-J.  |e author 
700 1 |a Lerche, C.  |e author 
700 1 |a Mauler, J.  |e author 
700 1 |a Neuner, I.  |e author 
700 1 |a Rajkumar, R.  |e author 
700 1 |a Régio Brambilla, C.  |e author 
700 1 |a Rota Kops, E.  |e author 
700 1 |a Scheins, J.  |e author 
700 1 |a Shah, N.J.  |e author 
700 1 |a Sripad, P.  |e author 
773 |t Human Brain Mapping