Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease—A simultaneous resting-state FDG-PET/fMRI study

A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of si...

Full description

Bibliographic Details
Main Authors: Drzezga, A. (Author), Grimmer, T. (Author), Grothe, M.J (Author), Pasquini, L. (Author), Rauschecker, J.P (Author), Riedl, V. (Author), Scherr, M. (Author), Sorg, C. (Author), Tahmasian, M. (Author), Utz, L. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04072nam a2200793Ia 4500
001 10.1002-hbm.24517
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Effective connectivity in the default mode network is distinctively disrupted in Alzheimer's disease—A simultaneous resting-state FDG-PET/fMRI study 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.24517 
520 3 |a A prominent finding of postmortem and molecular imaging studies on Alzheimer's disease (AD) is the accumulation of neuropathological proteins in brain regions of the default mode network (DMN). Molecular models suggest that the progression of disease proteins depends on the directionality of signaling pathways. At network level, effective connectivity (EC) reflects directionality of signaling pathways. We hypothesized a specific pattern of EC in the DMN of patients with AD, related to cognitive impairment. Metabolic connectivity mapping is a novel measure of EC identifying regions of signaling input based on neuroenergetics. We simultaneously acquired resting-state functional MRI and FDG-PET data from patients with early AD (n = 35) and healthy subjects (n = 18) on an integrated PET/MR scanner. We identified two distinct subnetworks of EC in the DMN of healthy subjects: an anterior part with bidirectional EC between hippocampus and medial prefrontal cortex and a posterior part with predominant input into medial parietal cortex. Patients had reduced input into the medial parietal system and absent input from hippocampus into medial prefrontal cortex (p < 0.05, corrected). In a multiple linear regression with unimodal imaging and EC measures (F4,25 = 5.63, p = 0.002, r2 = 0.47), we found that EC (β = 0.45, p = 0.012) was stronger associated with cognitive deficits in patients than any of the PET and fMRI measures alone. Our approach indicates specific disruptions of EC in the DMN of patients with AD and might be suitable to test molecular theories about downstream and upstream spreading of neuropathology in AD. © 2019 Wiley Periodicals, Inc. 
650 0 4 |a aged 
650 0 4 |a Aged 
650 0 4 |a Alzheimer disease 
650 0 4 |a Alzheimer disease 
650 0 4 |a Alzheimer Disease 
650 0 4 |a Article 
650 0 4 |a brain cortex 
650 0 4 |a Cerebral Cortex 
650 0 4 |a clinical article 
650 0 4 |a cognitive defect 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a controlled study 
650 0 4 |a default mode network 
650 0 4 |a default mode network 
650 0 4 |a Default Mode Network 
650 0 4 |a diagnostic imaging 
650 0 4 |a directional signaling 
650 0 4 |a disease exacerbation 
650 0 4 |a effective connectivity 
650 0 4 |a energy metabolism 
650 0 4 |a energy metabolism 
650 0 4 |a female 
650 0 4 |a fluorodeoxyglucose 
650 0 4 |a functional connectivity 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a functional neuroimaging 
650 0 4 |a hippocampus 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a male 
650 0 4 |a medial prefrontal cortex 
650 0 4 |a metabolism 
650 0 4 |a multimodal imaging 
650 0 4 |a Multimodal Imaging 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a parietal cortex 
650 0 4 |a pathophysiology 
650 0 4 |a positron emission tomography 
650 0 4 |a positron emission tomography 
650 0 4 |a Positron-Emission Tomography 
650 0 4 |a procedures 
650 0 4 |a resting state 
650 0 4 |a signal transduction 
650 0 4 |a simultaneous PET/fMRI 
700 1 |a Drzezga, A.  |e author 
700 1 |a Grimmer, T.  |e author 
700 1 |a Grothe, M.J.  |e author 
700 1 |a Pasquini, L.  |e author 
700 1 |a Rauschecker, J.P.  |e author 
700 1 |a Riedl, V.  |e author 
700 1 |a Scherr, M.  |e author 
700 1 |a Sorg, C.  |e author 
700 1 |a Tahmasian, M.  |e author 
700 1 |a Utz, L.  |e author 
773 |t Human Brain Mapping