Perceptual learning of tone patterns changes the effective connectivity between Heschl's gyrus and planum temporale

Learning of complex auditory sequences such as music can be thought of as optimizing an internal model of regularities through unpredicted events (or “prediction errors”). We used dynamic causal modeling (DCM) and parametric empirical Bayes on functional magnetic resonance imaging (fMRI) data to ide...

Full description

Bibliographic Details
Main Authors: Dietz, M.J (Author), Hansen, N.C (Author), Lumaca, M. (Author), Quiroga-Martinez, D.R (Author), Vuust, P. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
DCM
Online Access:View Fulltext in Publisher
LEADER 03603nam a2200745Ia 4500
001 10.1002-hbm.25269
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Perceptual learning of tone patterns changes the effective connectivity between Heschl's gyrus and planum temporale 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25269 
520 3 |a Learning of complex auditory sequences such as music can be thought of as optimizing an internal model of regularities through unpredicted events (or “prediction errors”). We used dynamic causal modeling (DCM) and parametric empirical Bayes on functional magnetic resonance imaging (fMRI) data to identify modulation of effective brain connectivity that takes place during perceptual learning of complex tone patterns. Our approach differs from previous studies in two aspects. First, we used a complex oddball paradigm based on tone patterns as opposed to simple deviant tones. Second, the use of fMRI allowed us to identify cortical regions with high spatial accuracy. These regions served as empirical regions-of-interest for the analysis of effective connectivity. Deviant patterns induced an increased blood oxygenation level-dependent response, compared to standards, in early auditory (Heschl's gyrus [HG]) and association auditory areas (planum temporale [PT]) bilaterally. Within this network, we found a left-lateralized increase in feedforward connectivity from HG to PT during deviant responses and an increase in excitation within left HG. In contrast to previous findings, we did not find frontal activity, nor did we find modulations of backward connections in response to oddball sounds. Our results suggest that complex auditory prediction errors are encoded by changes in feedforward and intrinsic connections, confined to superior temporal gyrus. © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a article 
650 0 4 |a auditory cortex 
650 0 4 |a auditory cortex 
650 0 4 |a auditory cortex 
650 0 4 |a Auditory Cortex 
650 0 4 |a Auditory Perception 
650 0 4 |a blood oxygenation 
650 0 4 |a causal modeling 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a controlled study 
650 0 4 |a DCM 
650 0 4 |a diagnostic imaging 
650 0 4 |a effective connectivity 
650 0 4 |a excitation 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a fMRI 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a hearing 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a learning 
650 0 4 |a learning 
650 0 4 |a Learning 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a Models, Theoretical 
650 0 4 |a music 
650 0 4 |a Music 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Net 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a perceptual learning 
650 0 4 |a physiology 
650 0 4 |a precision-weighting 
650 0 4 |a prediction 
650 0 4 |a predictive coding 
650 0 4 |a sound 
650 0 4 |a superior temporal gyrus 
650 0 4 |a superior temporal gyrus 
650 0 4 |a temporal lobe 
650 0 4 |a Temporal Lobe 
650 0 4 |a theoretical model 
650 0 4 |a young adult 
650 0 4 |a Young Adult 
700 1 |a Dietz, M.J.  |e author 
700 1 |a Hansen, N.C.  |e author 
700 1 |a Lumaca, M.  |e author 
700 1 |a Quiroga-Martinez, D.R.  |e author 
700 1 |a Vuust, P.  |e author 
773 |t Human Brain Mapping