Machine learning-based multimodal prediction of language outcomes in chronic aphasia

Recent studies have combined multiple neuroimaging modalities to gain further understanding of the neurobiological substrates of aphasia. Following this line of work, the current study uses machine learning approaches to predict aphasia severity and specific language measures based on a multimodal n...

Full description

Bibliographic Details
Main Authors: Basilakos, A. (Author), Bonilha, L. (Author), Fridriksson, J. (Author), Hillis, A. (Author), Kristinsson, S. (Author), Newman-Norlund, R. (Author), Rorden, C. (Author), Xiao, F. (Author), Yourganov, G. (Author), Zhang, W. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
CBF
FA
Online Access:View Fulltext in Publisher
LEADER 04650nam a2201069Ia 4500
001 10.1002-hbm.25321
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Machine learning-based multimodal prediction of language outcomes in chronic aphasia 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25321 
520 3 |a Recent studies have combined multiple neuroimaging modalities to gain further understanding of the neurobiological substrates of aphasia. Following this line of work, the current study uses machine learning approaches to predict aphasia severity and specific language measures based on a multimodal neuroimaging dataset. A total of 116 individuals with chronic left-hemisphere stroke were included in the study. Neuroimaging data included task-based functional magnetic resonance imaging (fMRI), diffusion-based fractional anisotropy (FA)-values, cerebral blood flow (CBF), and lesion-load data. The Western Aphasia Battery was used to measure aphasia severity and specific language functions. As a primary analysis, we constructed support vector regression (SVR) models predicting language measures based on (i) each neuroimaging modality separately, (ii) lesion volume alone, and (iii) a combination of all modalities. Prediction accuracy across models was subsequently statistically compared. Prediction accuracy across modalities and language measures varied substantially (predicted vs. empirical correlation range: r =.00–.67). The multimodal prediction model yielded the most accurate prediction in all cases (r =.53–.67). Statistical superiority in favor of the multimodal model was achieved in 28/30 model comparisons (p-value range: <.001–.046). Our results indicate that different neuroimaging modalities carry complementary information that can be integrated to more accurately depict how brain damage and remaining functionality of intact brain tissue translate into language function in aphasia. © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a aged 
650 0 4 |a Aged 
650 0 4 |a Aged, 80 and over 
650 0 4 |a aphasia 
650 0 4 |a aphasia 
650 0 4 |a aphasia 
650 0 4 |a Aphasia 
650 0 4 |a Article 
650 0 4 |a brain blood flow 
650 0 4 |a brain circulation 
650 0 4 |a brain hemorrhage 
650 0 4 |a CBF 
650 0 4 |a cerebrovascular accident 
650 0 4 |a Cerebrovascular Circulation 
650 0 4 |a chronic aphasia 
650 0 4 |a chronic disease 
650 0 4 |a Chronic Disease 
650 0 4 |a complication 
650 0 4 |a controlled study 
650 0 4 |a data accuracy 
650 0 4 |a diffusion tensor imaging 
650 0 4 |a Diffusion Tensor Imaging 
650 0 4 |a disease severity 
650 0 4 |a FA 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a fMRI 
650 0 4 |a fractional anisotropy 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a functional neuroimaging 
650 0 4 |a Functional Neuroimaging 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a ischemic stroke 
650 0 4 |a language processing 
650 0 4 |a language test 
650 0 4 |a Language Tests 
650 0 4 |a left hemisphere 
650 0 4 |a lesion 
650 0 4 |a machine learning 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a middle aged 
650 0 4 |a Middle Aged 
650 0 4 |a multimodal 
650 0 4 |a multimodal imaging 
650 0 4 |a Multimodal Imaging 
650 0 4 |a neuroimaging 
650 0 4 |a neuroimaging 
650 0 4 |a Neuroimaging 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a Outcome Assessment, Health Care 
650 0 4 |a pathology 
650 0 4 |a pathophysiology 
650 0 4 |a physiology 
650 0 4 |a priority journal 
650 0 4 |a procedures 
650 0 4 |a severity of illness index 
650 0 4 |a Severity of Illness Index 
650 0 4 |a Stroke 
650 0 4 |a support vector machine 
650 0 4 |a support vector machine 
650 0 4 |a Support Vector Machine 
650 0 4 |a very elderly 
650 0 4 |a Western aphasia battery 
700 1 |a Basilakos, A.  |e author 
700 1 |a Bonilha, L.  |e author 
700 1 |a Fridriksson, J.  |e author 
700 1 |a Hillis, A.  |e author 
700 1 |a Kristinsson, S.  |e author 
700 1 |a Newman-Norlund, R.  |e author 
700 1 |a Rorden, C.  |e author 
700 1 |a Xiao, F.  |e author 
700 1 |a Yourganov, G.  |e author 
700 1 |a Zhang, W.  |e author 
773 |t Human Brain Mapping