Putamen volume predicts real-time fMRI neurofeedback learning success across paradigms and neurofeedback target regions

Real-time fMRI guided neurofeedback training has gained increasing interest as a noninvasive brain regulation technique with the potential to modulate functional brain alterations in therapeutic contexts. Individual variations in learning success and treatment response have been observed, yet the ne...

Full description

Bibliographic Details
Main Authors: Becker, B. (Author), Chen, H. (Author), Kendrick, K.M (Author), Mathiak, K. (Author), Yao, S. (Author), Zhao, Z. (Author), Zhou, F. (Author), Zhou, X. (Author), Zweerings, J. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03554nam a2200829Ia 4500
001 10.1002-hbm.25336
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Putamen volume predicts real-time fMRI neurofeedback learning success across paradigms and neurofeedback target regions 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25336 
520 3 |a Real-time fMRI guided neurofeedback training has gained increasing interest as a noninvasive brain regulation technique with the potential to modulate functional brain alterations in therapeutic contexts. Individual variations in learning success and treatment response have been observed, yet the neural substrates underlying the learning of self-regulation remain unclear. Against this background, we explored potential brain structural predictors for learning success with pooled data from three real-time fMRI data sets. Our analysis revealed that gray matter volume of the right putamen could predict neurofeedback learning success across the three data sets (n = 66 in total). Importantly, the original studies employed different neurofeedback paradigms during which different brain regions were trained pointing to a general association with learning success independent of specific aspects of the experimental design. Given the role of the putamen in associative learning this finding may reflect an important role of instrumental learning processes and brain structural variations in associated brain regions for successful acquisition of fMRI neurofeedback-guided self-regulation. © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a anatomy and histology 
650 0 4 |a article 
650 0 4 |a associative learning 
650 0 4 |a autoregulation 
650 0 4 |a brain cortex 
650 0 4 |a brain morphometry 
650 0 4 |a brain region 
650 0 4 |a Cerebral Cortex 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a Datasets as Topic 
650 0 4 |a diagnostic imaging 
650 0 4 |a experimental design 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a functional neuroimaging 
650 0 4 |a Functional Neuroimaging 
650 0 4 |a gray matter volume 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a information processing 
650 0 4 |a instrumental learning 
650 0 4 |a learning 
650 0 4 |a Learning 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a meta analysis 
650 0 4 |a morphometry 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Net 
650 0 4 |a neurofeedback 
650 0 4 |a neurofeedback 
650 0 4 |a neurofeedback 
650 0 4 |a Neurofeedback 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a physiology 
650 0 4 |a putamen 
650 0 4 |a putamen 
650 0 4 |a Putamen 
650 0 4 |a real-time fMRI 
650 0 4 |a self control 
650 0 4 |a Self-Control 
650 0 4 |a striatum 
650 0 4 |a young adult 
650 0 4 |a Young Adult 
700 1 |a Becker, B.  |e author 
700 1 |a Chen, H.  |e author 
700 1 |a Kendrick, K.M.  |e author 
700 1 |a Mathiak, K.  |e author 
700 1 |a Yao, S.  |e author 
700 1 |a Zhao, Z.  |e author 
700 1 |a Zhou, F.  |e author 
700 1 |a Zhou, X.  |e author 
700 1 |a Zweerings, J.  |e author 
773 |t Human Brain Mapping