White matter hyperintensities induce distal deficits in the connected fibers

White matter hyperintensities (WMH) are common in elderly individuals and cause brain network deficits. However, it is still unclear how the global brain network is affected by the focal WMH. We aimed to investigate the diffusion of WMH-related deficits along the connecting white matters (WM). Brain...

Full description

Bibliographic Details
Main Authors: Cheng, X. (Author), Ding, D. (Author), Dong, Q. (Author), Gao, J.-H (Author), He, J. (Author), Liang, X. (Author), Liang, Z. (Author), Liu, Y. (Author), Nguchu, B.A (Author), Qiu, B. (Author), Wang, X. (Author), Wang, Y. (Author), Wu, J. (Author), Xia, Y. (Author), Yang, L. (Author), Ying, Y. (Author), Zhang, D. (Author), Zhao, Q. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 05047nam a2201189Ia 4500
001 10.1002-hbm.25338
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a White matter hyperintensities induce distal deficits in the connected fibers 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25338 
520 3 |a White matter hyperintensities (WMH) are common in elderly individuals and cause brain network deficits. However, it is still unclear how the global brain network is affected by the focal WMH. We aimed to investigate the diffusion of WMH-related deficits along the connecting white matters (WM). Brain magnetic resonance imaging data and neuropsychological evaluations of 174 participants (aged 74 ± 5 years) were collected and analyzed. For each participant, WMH lesions were segmented using a deep learning method, and 18 major WM tracts were reconstructed using automated quantitative tractography. The diffusion characteristics of distal WM tracts (with the WMH penumbra excluded) were calculated. Multivariable linear regression analysis was performed. We found that a high burden of tract-specific WMH was related to worse diffusion characteristics of distal WM tracts in a wide range of WM tracts, including the forceps major (FMA), forceps minor (FMI), anterior thalamic radiation (ATR), cingulum cingulate gyrus (CCG), corticospinal tract (CST), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus-parietal (SLFP), superior longitudinal fasciculus-temporal (SLFT), and uncinate fasciculus (UNC). Furthermore, a higher mean diffusivity (MD) of distal tracts was linked to worse attention and executive function in the FMI, right CCG, left ILF, SLFP, SLFT, and UNC. The effect of WMH on the microstructural integrity of WM tracts may propagate along tracts to distal regions beyond the penumbra and might eventually affect attention and executive function. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a aged 
650 0 4 |a Aged 
650 0 4 |a Aged, 80 and over 
650 0 4 |a aging 
650 0 4 |a Aging 
650 0 4 |a anticoagulant agent 
650 0 4 |a antidiabetic agent 
650 0 4 |a antihypertensive agent 
650 0 4 |a antilipemic agent 
650 0 4 |a antithrombocytic agent 
650 0 4 |a Article 
650 0 4 |a attention 
650 0 4 |a Attention 
650 0 4 |a axial diffusivity 
650 0 4 |a cingulate gyrus 
650 0 4 |a cognition 
650 0 4 |a computer assisted diagnosis 
650 0 4 |a deep learning 
650 0 4 |a Deep Learning 
650 0 4 |a diagnostic imaging 
650 0 4 |a diffusion tensor imaging 
650 0 4 |a diffusion tensor imaging 
650 0 4 |a Diffusion Tensor Imaging 
650 0 4 |a diffusion weighted imaging 
650 0 4 |a executive function 
650 0 4 |a Executive Function 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a fractional anisotropy 
650 0 4 |a geriatric patient 
650 0 4 |a health care 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Image Interpretation, Computer-Assisted 
650 0 4 |a inferior longitudinal fasciculus 
650 0 4 |a leukoaraiosis 
650 0 4 |a Leukoaraiosis 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a mean diffusivity 
650 0 4 |a microstructural integrity 
650 0 4 |a Mini Mental State Examination 
650 0 4 |a Montreal cognitive assessment 
650 0 4 |a myelinated nerve 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Fibers, Myelinated 
650 0 4 |a nerve tract 
650 0 4 |a Neural Pathways 
650 0 4 |a neuroimaging 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a pathology 
650 0 4 |a physiology 
650 0 4 |a priority journal 
650 0 4 |a procedures 
650 0 4 |a pyramidal tract 
650 0 4 |a Pyramidal Tracts 
650 0 4 |a radial diffusivity 
650 0 4 |a Rey auditory verbal learning test 
650 0 4 |a superior longitudinal fasciculus 
650 0 4 |a thalamus anterior nucleus 
650 0 4 |a tractography 
650 0 4 |a trail making test 
650 0 4 |a uncinate fasciculus 
650 0 4 |a very elderly 
650 0 4 |a white matter 
650 0 4 |a white matter 
650 0 4 |a White Matter 
650 0 4 |a white matter hyperintensities 
700 1 |a Cheng, X.  |e author 
700 1 |a Ding, D.  |e author 
700 1 |a Dong, Q.  |e author 
700 1 |a Gao, J.-H.  |e author 
700 1 |a He, J.  |e author 
700 1 |a Liang, X.  |e author 
700 1 |a Liang, Z.  |e author 
700 1 |a Liu, Y.  |e author 
700 1 |a Nguchu, B.A.  |e author 
700 1 |a Qiu, B.  |e author 
700 1 |a Wang, X.  |e author 
700 1 |a Wang, Y.  |e author 
700 1 |a Wang, Y.  |e author 
700 1 |a Wang, Y.  |e author 
700 1 |a Wu, J.  |e author 
700 1 |a Xia, Y.  |e author 
700 1 |a Yang, L.  |e author 
700 1 |a Ying, Y.  |e author 
700 1 |a Zhang, D.  |e author 
700 1 |a Zhao, Q.  |e author 
773 |t Human Brain Mapping