Resting-state magnetoencephalography source magnitude imaging with deep-learning neural network for classification of symptomatic combat-related mild traumatic brain injury

Combat-related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active-duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging...

Full description

Bibliographic Details
Main Authors: Angeles-Quinto, A. (Author), Baker, D.G (Author), Cheng, C.-K (Author), Drake, A. (Author), Dynes, R. (Author), Foote, E. (Author), Hansen, H.B (Author), Harrington, D.L (Author), Huang, C.W (Author), Huang, J.W (Author), Huang, M.-X (Author), Ji, Z. (Author), Le, L. (Author), Lee, R.R (Author), Lerman, I. (Author), Matthews, S. (Author), Naviaux, R.K (Author), Nichols, S. (Author), Rimmele, C. (Author), Robb-Swan, A. (Author), Shen, Q. (Author), Song, T. (Author), Yurgil, K.A (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 05069nam a2201021Ia 4500
001 10.1002-hbm.25340
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Resting-state magnetoencephalography source magnitude imaging with deep-learning neural network for classification of symptomatic combat-related mild traumatic brain injury 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25340 
520 3 |a Combat-related mild traumatic brain injury (cmTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral disabilities in Veterans and active-duty military personnel. Accurate diagnosis of cmTBI is challenging since the symptom spectrum is broad and conventional neuroimaging techniques are insensitive to the underlying neuropathology. The present study developed a novel deep-learning neural network method, 3D-MEGNET, and applied it to resting-state magnetoencephalography (rs-MEG) source-magnitude imaging data from 59 symptomatic cmTBI individuals and 42 combat-deployed healthy controls (HCs). Analytic models of individual frequency bands and all bands together were tested. The All-frequency model, which combined delta-theta (1–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz) frequency bands, outperformed models based on individual bands. The optimized 3D-MEGNET method distinguished cmTBI individuals from HCs with excellent sensitivity (99.9 ± 0.38%) and specificity (98.9 ± 1.54%). Receiver-operator-characteristic curve analysis showed that diagnostic accuracy was 0.99. The gamma and delta-theta band models outperformed alpha and beta band models. Among cmTBI individuals, but not controls, hyper delta-theta and gamma-band activity correlated with lower performance on neuropsychological tests, whereas hypo alpha and beta-band activity also correlated with lower neuropsychological test performance. This study provides an integrated framework for condensing large source-imaging variable sets into optimal combinations of regions and frequencies with high diagnostic accuracy and cognitive relevance in cmTBI. The all-frequency model offered more discriminative power than each frequency-band model alone. This approach offers an effective path for optimal characterization of behaviorally relevant neuroimaging features in neurological and psychiatric disorders. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a Article 
650 0 4 |a battle injury 
650 0 4 |a brain concussion 
650 0 4 |a Brain Concussion 
650 0 4 |a clinical feature 
650 0 4 |a Combat Disorders 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a controlled study 
650 0 4 |a deep learning 
650 0 4 |a Deep Learning 
650 0 4 |a Delis-Kaplan executive function system 
650 0 4 |a delta rhythm 
650 0 4 |a delta rhythm 
650 0 4 |a diagnostic accuracy 
650 0 4 |a diagnostic imaging 
650 0 4 |a diagnostic test accuracy study 
650 0 4 |a female 
650 0 4 |a gamma rhythm 
650 0 4 |a gamma rhythm 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a machine learning 
650 0 4 |a magnetoencephalography 
650 0 4 |a magnetoencephalography 
650 0 4 |a Magnetoencephalography 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a military service members 
650 0 4 |a neuroimaging 
650 0 4 |a neuropsychological test 
650 0 4 |a neuropsychology 
650 0 4 |a pathophysiology 
650 0 4 |a posttraumatic stress disorder 
650 0 4 |a priority journal 
650 0 4 |a procedures 
650 0 4 |a resting state magnetoencephalography 
650 0 4 |a resting-state MEG 
650 0 4 |a sensitivity and specificity 
650 0 4 |a Sensitivity and Specificity 
650 0 4 |a task performance 
650 0 4 |a theta rhythm 
650 0 4 |a three-dimensional imaging 
650 0 4 |a traumatic brain injury 
650 0 4 |a traumatic brain injury 
650 0 4 |a Veterans 
650 0 4 |a Wechsler adult intelligence scale 
650 0 4 |a young adult 
650 0 4 |a Young Adult 
700 1 |a Angeles-Quinto, A.  |e author 
700 1 |a Baker, D.G.  |e author 
700 1 |a Cheng, C.-K.  |e author 
700 1 |a Drake, A.  |e author 
700 1 |a Dynes, R.  |e author 
700 1 |a Foote, E.  |e author 
700 1 |a Hansen, H.B.  |e author 
700 1 |a Harrington, D.L.  |e author 
700 1 |a Huang, C.W.  |e author 
700 1 |a Huang, J.W.  |e author 
700 1 |a Huang, M.-X.  |e author 
700 1 |a Ji, Z.  |e author 
700 1 |a Le, L.  |e author 
700 1 |a Lee, R.R.  |e author 
700 1 |a Lerman, I.  |e author 
700 1 |a Matthews, S.  |e author 
700 1 |a Naviaux, R.K.  |e author 
700 1 |a Nichols, S.  |e author 
700 1 |a Rimmele, C.  |e author 
700 1 |a Robb-Swan, A.  |e author 
700 1 |a Shen, Q.  |e author 
700 1 |a Song, T.  |e author 
700 1 |a Yurgil, K.A.  |e author 
773 |t Human Brain Mapping