Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder

Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However,...

Full description

Bibliographic Details
Main Authors: Cai, B. (Author), Calhoun, V.D (Author), Hu, W. (Author), Stephen, J.M (Author), Wang, Y.-P (Author), Wilson, T.W (Author), Xiao, L. (Author), Zhang, A. (Author), Zhang, G. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03632nam a2200709Ia 4500
001 10.1002-hbm.25394
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions via autoencoder 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25394 
520 3 |a Functional network connectivity has been widely acknowledged to characterize brain functions, which can be regarded as “brain fingerprinting” to identify an individual from a pool of subjects. Both common and unique information has been shown to exist in the connectomes across individuals. However, very little is known about whether and how this information can be used to predict the individual variability of the brain. In this paper, we propose to enhance the uniqueness of individual connectome based on an autoencoder network. Specifically, we hypothesize that the common neural activities shared across individuals may reduce the individual identification. By removing contributions from shared activities, inter-subject variability can be enhanced. Our experimental results on HCP data show that the refined connectomes obtained by utilizing autoencoder with sparse dictionary learning can distinguish an individual from the remaining participants with high accuracy (up to 99.5% for the rest–rest pair). Furthermore, high-level cognitive behaviors (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted with the obtained refined connectomes. We also find that high-order association cortices contribute more to both individual discrimination and behavior prediction. In summary, our proposed framework provides a promising way to leverage functional connectivity networks for cognition and behavior study, in addition to a better understanding of brain functions. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a article 
650 0 4 |a association cortex 
650 0 4 |a autoencoder 
650 0 4 |a autoencoder network 
650 0 4 |a biological variation 
650 0 4 |a Biological Variation, Individual 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a cognition 
650 0 4 |a Cognition 
650 0 4 |a common connectivity patterns 
650 0 4 |a comprehension 
650 0 4 |a connectome 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a default mode network 
650 0 4 |a Default Mode Network 
650 0 4 |a diagnostic imaging 
650 0 4 |a executive function 
650 0 4 |a female 
650 0 4 |a functional connectivity 
650 0 4 |a functional connectivity 
650 0 4 |a high-level cognition prediction 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a individual identification 
650 0 4 |a intelligence 
650 0 4 |a language 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a male 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Net 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a physiology 
650 0 4 |a prediction 
650 0 4 |a procedures 
650 0 4 |a refined connectomes 
700 1 |a Cai, B.  |e author 
700 1 |a Calhoun, V.D.  |e author 
700 1 |a Hu, W.  |e author 
700 1 |a Stephen, J.M.  |e author 
700 1 |a Wang, Y.-P.  |e author 
700 1 |a Wilson, T.W.  |e author 
700 1 |a Xiao, L.  |e author 
700 1 |a Zhang, A.  |e author 
700 1 |a Zhang, G.  |e author 
773 |t Human Brain Mapping