Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics

The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed-effect group-level analyses, using concatena...

Full description

Bibliographic Details
Main Authors: Jeong, S.-O (Author), Kang, J. (Author), Pae, C. (Author), Park, H.-J (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03582nam a2200649Ia 4500
001 10.1002-hbm.25442
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25442 
520 3 |a The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed-effect group-level analyses, using concatenated time series across individuals, due to the need for large samples in the parameter estimation of MEM. To mitigate the small sample problem in analyzing energy landscapes for individuals, we propose a Bayesian estimation of individual MEM using variational Bayes approximation (BMEM). We evaluated the performances of BMEM with respect to sample sizes and prior information using simulation. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data, particularly utilizing the empirical priors derived from group data. We then analyzed individual rsfMRI of the Human Connectome Project to show the usefulness of MEM in differentiating individuals and in exploring neural correlates for human behavior. MEM and its energy landscape properties showed high subject specificity comparable to that of functional connectivity. Canonical correlation analysis identified canonical variables for MEM highly associated with cognitive scores. Inter-individual variations of cognitive scores were also reflected in energy landscape properties such as energies, occupation times, and basin sizes at local minima. We conclude that BMEM provides an efficient method to characterize dynamic properties of individuals using energy landscape analysis of individual brain states. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a article 
650 0 4 |a Bayes theorem 
650 0 4 |a Bayes Theorem 
650 0 4 |a Bayesian estimation 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a controlled study 
650 0 4 |a correlation analysis 
650 0 4 |a diagnostic imaging 
650 0 4 |a energy landscape 
650 0 4 |a entropy 
650 0 4 |a Entropy 
650 0 4 |a female 
650 0 4 |a functional connectivity 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a human tissue 
650 0 4 |a Humans 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a male 
650 0 4 |a maximum entropy model 
650 0 4 |a maximum entropy model 
650 0 4 |a maximum likelihood method 
650 0 4 |a Models, Theoretical 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Net 
650 0 4 |a nonlinear brain dynamics 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a occupation 
650 0 4 |a physiology 
650 0 4 |a procedures 
650 0 4 |a resting state fMRI 
650 0 4 |a sample size 
650 0 4 |a simulation 
650 0 4 |a theoretical model 
650 0 4 |a time series analysis 
700 1 |a Jeong, S.-O.  |e author 
700 1 |a Kang, J.  |e author 
700 1 |a Pae, C.  |e author 
700 1 |a Park, H.-J.  |e author 
773 |t Human Brain Mapping