Large-scale reconfiguration of connectivity patterns among attentional networks during context-dependent adjustment of cognitive control

The ability to adjust our behavior flexibly depending on situational demands and changes in the environment is an important characteristic of cognitive control. Previous studies have proved that this type of adaptive control plays a crucial role in selective attention, but have barely explored wheth...

Full description

Bibliographic Details
Main Authors: Chen, A. (Author), Li, Y. (Author), Wang, Y. (Author), Yu, F. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04011nam a2200745Ia 4500
001 10.1002-hbm.25467
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Large-scale reconfiguration of connectivity patterns among attentional networks during context-dependent adjustment of cognitive control 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25467 
520 3 |a The ability to adjust our behavior flexibly depending on situational demands and changes in the environment is an important characteristic of cognitive control. Previous studies have proved that this type of adaptive control plays a crucial role in selective attention, but have barely explored whether and how attentional networks support adaptive control. In the present study, a Stroop task with a different proportion of incongruent trials was used to investigate the brain activity and connectivity of six typical attentional control networks (i.e., the fronto-parietal network (FPN), cingulo-opercular network (CON), default mode network (DMN), dorsal attention network (DAN), and ventral attention network/salience network (VAN/SN)) in the environment with changing control demand. The behavioral analysis indicated a decreased Stroop interference (incongruent vs. congruent trial response time [RT]) with the increase in the proportion of incongruent trials within a block, indicating that cognitive control was improved there. The fMRI data revealed that the attenuate Stroop interference was accompanied by the activation of frontal and parietal regions, such as bilateral dorsolateral prefrontal cortex and anterior cingulate cortex. Crucially, the improved cognitive control induced by the increased proportion of incongruent trials was associated with the enhanced functional connectivity within the five networks, and a greater connection between CON with the DAN/SN, and between DMN with the CON/DAN/SN. Meanwhile, however, the functional coupling between the FPN and VAN was decreased. These results suggest that flexible regulations of cognitive control are implemented by the large-scale reconfiguration of connectivity patterns among the attentional networks. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adolescent 
650 0 4 |a Adolescent 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a anterior cingulate 
650 0 4 |a article 
650 0 4 |a attention 
650 0 4 |a Attention 
650 0 4 |a attentional networks 
650 0 4 |a brain cortex 
650 0 4 |a Cerebral Cortex 
650 0 4 |a cingulo opercular network 
650 0 4 |a cognitive control 
650 0 4 |a connectivity patterns 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a controlled study 
650 0 4 |a default mode network 
650 0 4 |a Default Mode Network 
650 0 4 |a diagnostic imaging 
650 0 4 |a dorsal attention network 
650 0 4 |a dorsolateral prefrontal cortex 
650 0 4 |a executive function 
650 0 4 |a executive function 
650 0 4 |a Executive Function 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a frontoparietal network 
650 0 4 |a functional connectivity 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Net 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a physiology 
650 0 4 |a psychomotor performance 
650 0 4 |a Psychomotor Performance 
650 0 4 |a reconfiguration 
650 0 4 |a salience network 
650 0 4 |a Stroop test 
650 0 4 |a Stroop Test 
650 0 4 |a ventral attention network 
650 0 4 |a young adult 
650 0 4 |a Young Adult 
700 1 |a Chen, A.  |e author 
700 1 |a Li, Y.  |e author 
700 1 |a Wang, Y.  |e author 
700 1 |a Yu, F.  |e author 
773 |t Human Brain Mapping