Assessing methods for geometric distortion compensation in 7 T gradient echo functional MRI data

Echo planar imaging (EPI) is widely used in functional and diffusion-weighted MRI, but suffers from significant geometric distortions in the phase encoding direction caused by inhomogeneities in the static magnetic field (B0). This is a particular challenge for EPI at very high field (≥7 T), as dist...

Full description

Bibliographic Details
Main Authors: Burton, P.C (Author), Olman, C.A (Author), Schallmo, M.-P (Author), Sponheim, S.R (Author), Weldon, K.B (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03729nam a2200685Ia 4500
001 10.1002-hbm.25540
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a Assessing methods for geometric distortion compensation in 7 T gradient echo functional MRI data 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25540 
520 3 |a Echo planar imaging (EPI) is widely used in functional and diffusion-weighted MRI, but suffers from significant geometric distortions in the phase encoding direction caused by inhomogeneities in the static magnetic field (B0). This is a particular challenge for EPI at very high field (≥7 T), as distortion increases with higher field strength. A number of techniques for distortion correction exist, including those based on B0 field mapping and acquiring EPI scans with opposite phase encoding directions. However, few quantitative comparisons of distortion compensation methods have been performed using human EPI data, especially at very high field. Here, we compared distortion compensation using B0 field maps and opposite phase encoding scans in two different software packages (FSL and AFNI) applied to 7 T gradient echo (GE) EPI data from 31 human participants. We assessed distortion compensation quality by quantifying alignment to anatomical reference scans using Dice coefficients and mutual information. Performance between FSL and AFNI was equivalent. In our whole-brain analyses, we found superior distortion compensation using GE scans with opposite phase encoding directions, versus B0 field maps or spin echo (SE) opposite phase encoding scans. However, SE performed better when analyses were limited to ventromedial prefrontal cortex, a region with substantial dropout. Matching the type of opposite phase encoding scans to the EPI data being corrected (e.g., SE-to-SE) also yielded better distortion correction. While the ideal distortion compensation approach likely varies depending on methodological differences across experiments, this study provides a framework for quantitative comparison of different distortion compensation methods. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a 7 Tesla 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a article 
650 0 4 |a B0 inhomogeneity 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a brain analysis 
650 0 4 |a clinical article 
650 0 4 |a compensation 
650 0 4 |a controlled study 
650 0 4 |a diagnostic imaging 
650 0 4 |a distortion compensation 
650 0 4 |a echo planar imaging 
650 0 4 |a echo planar imaging 
650 0 4 |a Echo-Planar Imaging 
650 0 4 |a family 
650 0 4 |a Family 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a field map 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a functional MRI 
650 0 4 |a functional neuroimaging 
650 0 4 |a Functional Neuroimaging 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a intermethod comparison 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a middle aged 
650 0 4 |a Middle Aged 
650 0 4 |a pathophysiology 
650 0 4 |a procedures 
650 0 4 |a psychosis 
650 0 4 |a Psychotic Disorders 
650 0 4 |a quantitative analysis 
650 0 4 |a schizophrenia 
650 0 4 |a Schizophrenia 
650 0 4 |a software 
650 0 4 |a ventromedial prefrontal cortex 
700 1 |a Burton, P.C.  |e author 
700 1 |a Olman, C.A.  |e author 
700 1 |a Schallmo, M.-P.  |e author 
700 1 |a Sponheim, S.R.  |e author 
700 1 |a Weldon, K.B.  |e author 
773 |t Human Brain Mapping