A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI

Prediction of cognitive ability latent factors such as general intelligence from neuroimaging has elucidated questions pertaining to their neural origins. However, predicting general intelligence from functional connectivity limit hypotheses to that specific domain, being agnostic to time-distribute...

Full description

Bibliographic Details
Main Authors: Calhoun, V.D (Author), Dubois, J. (Author), Garrido Salmon, C.E (Author), Hebling Vieira, B. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03056nam a2200601Ia 4500
001 10.1002-hbm.25656
008 220427s2021 CNT 000 0 und d
020 |a 10659471 (ISSN) 
245 1 0 |a A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/hbm.25656 
520 3 |a Prediction of cognitive ability latent factors such as general intelligence from neuroimaging has elucidated questions pertaining to their neural origins. However, predicting general intelligence from functional connectivity limit hypotheses to that specific domain, being agnostic to time-distributed features and dynamics. We used an ensemble of recurrent neural networks to circumvent this limitation, bypassing feature extraction, to predict general intelligence from resting-state functional magnetic resonance imaging regional signals of a large sample (n = 873) of Human Connectome Project adult subjects. Ablating common resting-state networks (RSNs) and measuring degradation in performance, we show that model reliance can be mostly explained by network size. Using our approach based on the temporal variance of saliencies, that is, gradients of outputs with regards to inputs, we identify a candidate set of networks that more reliably affect performance in the prediction of general intelligence than similarly sized RSNs. Our approach allows us to further test the effect of local alterations on data and the expected changes in derived metrics such as functional connectivity and instantaneous innovations. © 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 
650 0 4 |a adult 
650 0 4 |a article 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a brain-behavior 
650 0 4 |a connectome 
650 0 4 |a Connectome 
650 0 4 |a controlled study 
650 0 4 |a deep learning 
650 0 4 |a deep learning 
650 0 4 |a Deep Learning 
650 0 4 |a diagnostic imaging 
650 0 4 |a feature extraction 
650 0 4 |a female 
650 0 4 |a fMRI 
650 0 4 |a functional connectivity 
650 0 4 |a functional magnetic resonance imaging 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a intelligence 
650 0 4 |a intelligence 
650 0 4 |a intelligence 
650 0 4 |a Intelligence 
650 0 4 |a Magnetic Resonance Imaging 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a nerve cell network 
650 0 4 |a Nerve Net 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a physiology 
650 0 4 |a prediction 
650 0 4 |a procedures 
650 0 4 |a recurrent neural network 
650 0 4 |a resting state network 
650 0 4 |a resting-state 
700 1 |a Calhoun, V.D.  |e author 
700 1 |a Dubois, J.  |e author 
700 1 |a Garrido Salmon, C.E.  |e author 
700 1 |a Hebling Vieira, B.  |e author 
773 |t Human Brain Mapping