Development of novel quality control material based on CRISPR/Cas9 editing and xenografts for MLH1 protein deficiency testing

Background: Mismatch repair deficiency (dMMR) status induced by MLH1 protein deficiency plays a pivotal role in therapeutic decision-making for cancer patients. Appropriate quality control (QC) materials are necessary for monitoring the accuracy of MLH1 protein deficiency assays used in clinical lab...

Full description

Bibliographic Details
Main Authors: Chen, Y. (Author), Han, D. (Author), Han, Y. (Author), Li, J. (Author), Li, R. (Author), Tan, P. (Author), Wang, M. (Author), Zhang, J. (Author), Zhang, R. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04635nam a2200961Ia 4500
001 10.1002-jcla.23746
008 220427s2021 CNT 000 0 und d
020 |a 08878013 (ISSN) 
245 1 0 |a Development of novel quality control material based on CRISPR/Cas9 editing and xenografts for MLH1 protein deficiency testing 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/jcla.23746 
520 3 |a Background: Mismatch repair deficiency (dMMR) status induced by MLH1 protein deficiency plays a pivotal role in therapeutic decision-making for cancer patients. Appropriate quality control (QC) materials are necessary for monitoring the accuracy of MLH1 protein deficiency assays used in clinical laboratories. Methods: CRISPR/Cas9 technology was used to edit the MLH1 gene of GM12878Cas9 cells to establish MLH1 protein-deficient cell lines. The positive cell lines were screened and validated by Sanger sequencing, Western blot (WB), and next-generation sequencing (NGS) and were then used to prepare formalin-fixed, paraffin-embedded (FFPE) samples through xenografting. These FFPE samples were tested by hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) for suitability as novel QC materials for MLH1 protein deficiency testing. Results: We successfully cultured 358 monoclonal cells, with a survival rate of 37.3% (358/960) of the sorted monoclonal cells. Through Sanger sequencing, cell lines with MLH1 gene mutation were identified. Subsequently, two cell lines with MLH1 protein deficiency were identified by WB and named as GM12878Cas9_6 and GM12878Cas9_10. The NGS results further confirmed that the MLH1 gene mutation in these two cell lines would cause the formation of stop codons and terminate the expression of the MLH1 protein. The H&E staining and IHC results also verified the deficiency of the MLH1 protein, and FFPE samples from xenografts proved their similarity and consistency with clinical samples. Conclusions: We successfully established MLH1 protein-deficient cell lines. Followed by xenografting, we developed novel FFPE QC materials with homogenous, sustainable, and typical histological structures advantages that are suitable for the standardization of clinical IHC methods. © 2021 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a Base Sequence 
650 0 4 |a cancer cell line 
650 0 4 |a cell clone 
650 0 4 |a cell culture 
650 0 4 |a cell line 
650 0 4 |a Cell Line 
650 0 4 |a cell selection 
650 0 4 |a CRISPR Cas system 
650 0 4 |a CRISPR/Cas9 
650 0 4 |a CRISPR-Cas Systems 
650 0 4 |a CRISPR-CAS9 system 
650 0 4 |a drug screening 
650 0 4 |a eosin 
650 0 4 |a formaldehyde 
650 0 4 |a formalin fixed paraffin embedded 
650 0 4 |a gene editing 
650 0 4 |a gene editing 
650 0 4 |a Gene Editing 
650 0 4 |a gene mutation 
650 0 4 |a genetics 
650 0 4 |a GM12878Cas9 10 cell line 
650 0 4 |a GM12878Cas9 6 cell line 
650 0 4 |a hematoxylin 
650 0 4 |a high throughput sequencing 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a human tissue 
650 0 4 |a Humans 
650 0 4 |a immunohistochemistry 
650 0 4 |a immunohistochemistry 
650 0 4 |a Mice, Inbred NOD 
650 0 4 |a Mice, SCID 
650 0 4 |a MLH1 
650 0 4 |a MLH1 gene 
650 0 4 |a MLH1 protein deficiency 
650 0 4 |a mutation 
650 0 4 |a Mutation 
650 0 4 |a MutL protein homolog 1 
650 0 4 |a MutL Protein Homolog 1 
650 0 4 |a next-generation sequencing 
650 0 4 |a nonobese diabetic mouse 
650 0 4 |a nucleotide sequence 
650 0 4 |a paraffin embedding 
650 0 4 |a protein analysis 
650 0 4 |a protein deficiency 
650 0 4 |a protein expression 
650 0 4 |a quality control 
650 0 4 |a quality control 
650 0 4 |a Quality Control 
650 0 4 |a quality control material 
650 0 4 |a Sanger sequencing 
650 0 4 |a SCID mouse 
650 0 4 |a stop codon 
650 0 4 |a tissue fixation 
650 0 4 |a tumor xenograft 
650 0 4 |a Western blotting 
650 0 4 |a Xenograft Model Antitumor Assays 
700 1 |a Chen, Y.  |e author 
700 1 |a Han, D.  |e author 
700 1 |a Han, Y.  |e author 
700 1 |a Li, J.  |e author 
700 1 |a Li, R.  |e author 
700 1 |a Tan, P.  |e author 
700 1 |a Wang, M.  |e author 
700 1 |a Zhang, J.  |e author 
700 1 |a Zhang, R.  |e author 
700 1 |a Zhang, R.  |e author 
773 |t Journal of Clinical Laboratory Analysis