Nuclear ranges in implicative semilattices

A nucleus on a meet-semilattice A is a closure operation that preserves binary meets. The nuclei form a semilattice N A that is isomorphic to the system NA of all nuclear ranges, ordered by dual inclusion. The nuclear ranges are those closure ranges which are total subalgebras (l-ideals). Nuclei hav...

Full description

Bibliographic Details
Main Author: Erné, M. (Author)
Format: Article
Language:English
Published: Birkhauser 2022
Subjects:
Online Access:View Fulltext in Publisher
Description
Summary:A nucleus on a meet-semilattice A is a closure operation that preserves binary meets. The nuclei form a semilattice N A that is isomorphic to the system NA of all nuclear ranges, ordered by dual inclusion. The nuclear ranges are those closure ranges which are total subalgebras (l-ideals). Nuclei have been studied intensively in the case of complete Heyting algebras. We extend, as far as possible, results on nuclei and their ranges to the non-complete setting of implicative semilattices (whose unary meet translations have adjoints). A central tool are so-called r-morphisms, that is, residuated semilattice homomorphisms, and their adjoints, the l-morphisms. Such morphisms transport nuclear ranges and preserve implicativity. Certain completeness properties are necessary and sufficient for the existence of a least nucleus above a prenucleus or of a greatest nucleus below a weak nucleus. As in pointfree topology, of great importance for structural investigations are three specific kinds of l-ideals, called basic open, boolean and basic closed. © 2022, The Author(s).
ISBN:00025240 (ISSN)
DOI:10.1007/s00012-022-00768-3