A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity

A biphasic computational model of a growing, vascularized glioma within brain tissue was developed to account for unique features of gliomas, including soft surrounding brain tissue, their low stiffness relative to brain tissue, and a lack of draining lymphatics. This model is the first to couple no...

Full description

Bibliographic Details
Main Authors: Ewing, J.R (Author), Rey, J.A (Author), Sarntinoranont, M. (Author)
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04983nam a2201141Ia 4500
001 10.1007-s10237-021-01488-8
008 220427s2021 CNT 000 0 und d
020 |a 16177959 (ISSN) 
245 1 0 |a A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity 
260 0 |b Springer Science and Business Media Deutschland GmbH  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s10237-021-01488-8 
520 3 |a A biphasic computational model of a growing, vascularized glioma within brain tissue was developed to account for unique features of gliomas, including soft surrounding brain tissue, their low stiffness relative to brain tissue, and a lack of draining lymphatics. This model is the first to couple nonlinear tissue deformation with porosity and tissue hydraulic conductivity to study the mechanical interaction of leaky vasculature and solid growth in an embedded glioma. The present model showed that leaky vasculature and elevated interstitial fluid pressure produce tensile stress within the tumor in opposition to the compressive stress produced by tumor growth. This tensile effect was more pronounced in softer tissue and resulted in a compressive stress concentration at the tumor rim that increased when tumor was softer than host. Aside from generating solid stress, fluid pressure-driven tissue deformation decreased the effective stiffness of the tumor while growth increased it, potentially leading to elevated stiffness in the tumor rim. A novel prediction of reduced porosity at the tumor rim was corroborated by direct comparison with estimates from our in vivo imaging studies. Antiangiogenic and radiation therapy were simulated by varying vascular leakiness and tissue hydraulic conductivity. These led to greater solid compression and interstitial pressure in the tumor, respectively, the former of which may promote tumor infiltration of the host. Our findings suggest that vascular leakiness has an important influence on in vivo solid stress, stiffness, and porosity fields in gliomas given their unique mechanical microenvironment. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Antiangiogenesis 
650 0 4 |a antiangiogenic therapy 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a Biphasic theory 
650 0 4 |a brain 
650 0 4 |a Brain 
650 0 4 |a Brain 
650 0 4 |a Brain 
650 0 4 |a Brain Neoplasms 
650 0 4 |a brain tissue 
650 0 4 |a brain tumor 
650 0 4 |a cancer infiltration 
650 0 4 |a cancer radiotherapy 
650 0 4 |a comparative study 
650 0 4 |a compression 
650 0 4 |a compressive strength 
650 0 4 |a Compressive Strength 
650 0 4 |a Compressive stress 
650 0 4 |a Computation theory 
650 0 4 |a Computational methods 
650 0 4 |a Computational model 
650 0 4 |a computer model 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a Deformation 
650 0 4 |a Effective stiffness 
650 0 4 |a extracellular fluid 
650 0 4 |a Extracellular Fluid 
650 0 4 |a finite element analysis 
650 0 4 |a glioma 
650 0 4 |a glioma 
650 0 4 |a Glioma 
650 0 4 |a Glioma 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a hydraulic conductivity 
650 0 4 |a Hydraulic conductivity 
650 0 4 |a in vivo study 
650 0 4 |a Interstitial fluid pressures 
650 0 4 |a lymph 
650 0 4 |a Lymph 
650 0 4 |a lymphatic system 
650 0 4 |a mathematical model 
650 0 4 |a Mechanical interactions 
650 0 4 |a Mechanical model 
650 0 4 |a mechanical stress 
650 0 4 |a mechanical stress 
650 0 4 |a Mechanical stress 
650 0 4 |a mechanics 
650 0 4 |a Microenvironments 
650 0 4 |a Models, Biological 
650 0 4 |a Models, Theoretical 
650 0 4 |a pathophysiology 
650 0 4 |a physiology 
650 0 4 |a Poroelasticity 
650 0 4 |a porosity 
650 0 4 |a porosity 
650 0 4 |a Porosity 
650 0 4 |a Porosity 
650 0 4 |a Porous media 
650 0 4 |a pressure 
650 0 4 |a Pressure 
650 0 4 |a rigidity 
650 0 4 |a simulation 
650 0 4 |a Stiffness 
650 0 4 |a Stress, Mechanical 
650 0 4 |a tensile strength 
650 0 4 |a Tensile Strength 
650 0 4 |a theoretical model 
650 0 4 |a Tissue deformations 
650 0 4 |a Tissue engineering 
650 0 4 |a tissue pressure 
650 0 4 |a tumor growth 
650 0 4 |a tumor microenvironment 
650 0 4 |a tumor microenvironment 
650 0 4 |a Tumor Microenvironment 
650 0 4 |a tumor vascularization 
650 0 4 |a Tumors 
650 0 4 |a Unique features 
700 1 |a Ewing, J.R.  |e author 
700 1 |a Rey, J.A.  |e author 
700 1 |a Sarntinoranont, M.  |e author 
773 |t Biomechanics and Modeling in Mechanobiology