Patient-specific simulation of stent-graft deployment in type B aortic dissection: model development and validation

Thoracic endovascular aortic repair (TEVAR) has been accepted as the mainstream treatment for type B aortic dissection, but post-TEVAR biomechanical-related complications are still a major drawback. Unfortunately, the stent-graft (SG) configuration after implantation and biomechanical interactions b...

Full description

Bibliographic Details
Main Authors: Dong, Z. (Author), Kan, X. (Author), Lin, J. (Author), Ma, T. (Author), Wang, L. (Author), Xu, X.Y (Author)
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04785nam a2201021Ia 4500
001 10.1007-s10237-021-01504-x
008 220427s2021 CNT 000 0 und d
020 |a 16177959 (ISSN) 
245 1 0 |a Patient-specific simulation of stent-graft deployment in type B aortic dissection: model development and validation 
260 0 |b Springer Science and Business Media Deutschland GmbH  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s10237-021-01504-x 
520 3 |a Thoracic endovascular aortic repair (TEVAR) has been accepted as the mainstream treatment for type B aortic dissection, but post-TEVAR biomechanical-related complications are still a major drawback. Unfortunately, the stent-graft (SG) configuration after implantation and biomechanical interactions between the SG and local aorta are usually unknown prior to a TEVAR procedure. The ability to obtain such information via personalised computational simulation would greatly assist clinicians in pre-surgical planning. In this study, a virtual SG deployment simulation framework was developed for the treatment for a complicated aortic dissection case. It incorporates patient-specific anatomical information based on pre-TEVAR CT angiographic images, details of the SG design and the mechanical properties of the stent wire, graft and dissected aorta. Hyperelastic material parameters for the aortic wall were determined based on uniaxial tensile testing performed on aortic tissue samples taken from type B aortic dissection patients. Pre-stress conditions of the aortic wall and the action of blood pressure were also accounted for. The simulated post-TEVAR configuration was compared with follow-up CT scans, demonstrating good agreement with mean deviations of 5.8% in local open area and 4.6 mm in stent strut position. Deployment of the SG increased the maximum principal stress by 24.30 kPa in the narrowed true lumen but reduced the stress by 31.38 kPa in the entry tear region where there was an aneurysmal expansion. Comparisons of simulation results with different levels of model complexity suggested that pre-stress of the aortic wall and blood pressure inside the SG should be included in order to accurately predict the deformation of the deployed SG. © 2021, The Author(s). 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a alloy 
650 0 4 |a Alloys 
650 0 4 |a Anatomical information 
650 0 4 |a Aneurysm, Dissecting 
650 0 4 |a Angiographic images 
650 0 4 |a aorta 
650 0 4 |a Aorta 
650 0 4 |a aortic dissection 
650 0 4 |a aortic tissue 
650 0 4 |a aortic wall 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a biomechanics 
650 0 4 |a Biomechanics 
650 0 4 |a Blood 
650 0 4 |a blood pressure 
650 0 4 |a Blood pressure 
650 0 4 |a Blood Vessel Prosthesis Implantation 
650 0 4 |a blood vessel transplantation 
650 0 4 |a Blood vessels 
650 0 4 |a case report 
650 0 4 |a clinical article 
650 0 4 |a Computational simulation 
650 0 4 |a computed tomographic angiography 
650 0 4 |a Computed Tomography Angiography 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a Computerized tomography 
650 0 4 |a Deployment simulation 
650 0 4 |a diagnostic imaging 
650 0 4 |a dissecting aneurysm 
650 0 4 |a elasticity 
650 0 4 |a Elasticity 
650 0 4 |a Endovascular Procedures 
650 0 4 |a endovascular surgery 
650 0 4 |a equipment design 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a finite element analysis 
650 0 4 |a Finite element analysis 
650 0 4 |a follow up 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Hyperelastic materials 
650 0 4 |a materials testing 
650 0 4 |a Maximum principal stress 
650 0 4 |a mechanical stress 
650 0 4 |a Models, Cardiovascular 
650 0 4 |a nitinol 
650 0 4 |a pathology 
650 0 4 |a polyethylene terephthalate 
650 0 4 |a Presurgical planning 
650 0 4 |a reproducibility 
650 0 4 |a Reproducibility of Results 
650 0 4 |a simulation 
650 0 4 |a stent 
650 0 4 |a Stents 
650 0 4 |a Stents 
650 0 4 |a Stress, Mechanical 
650 0 4 |a tensile strength measurement 
650 0 4 |a Tensile testing 
650 0 4 |a TEVAR 
650 0 4 |a type b aortic dissection 
650 0 4 |a Type B aortic dissection 
650 0 4 |a Uniaxial tensile testing 
650 0 4 |a Virtual stent-graft deployment 
650 0 4 |a x-ray computed tomography 
700 1 |a Dong, Z.  |e author 
700 1 |a Kan, X.  |e author 
700 1 |a Lin, J.  |e author 
700 1 |a Ma, T.  |e author 
700 1 |a Wang, L.  |e author 
700 1 |a Xu, X.Y.  |e author 
773 |t Biomechanics and Modeling in Mechanobiology