Photosynthetic Systems Suggest an Evolutionary Pathway to Diderms

Bacteria are divided primarily into monoderms (with one cell membrane, and usually Gram-positive, due to a thick peptidoglycan layer) and diderms (with two cell membranes, and mostly Gram-negative, due to a thin peptidoglycan layer sandwiched between the two membranes). Photosynthetic species are sp...

Full description

Bibliographic Details
Main Author: Rogers, S.O (Author)
Format: Article
Language:English
Published: Springer Science and Business Media B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02627nam a2200529Ia 4500
001 10.1007-s10441-020-09402-y
008 220427s2021 CNT 000 0 und d
020 |a 00015342 (ISSN) 
245 1 0 |a Photosynthetic Systems Suggest an Evolutionary Pathway to Diderms 
260 0 |b Springer Science and Business Media B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s10441-020-09402-y 
520 3 |a Bacteria are divided primarily into monoderms (with one cell membrane, and usually Gram-positive, due to a thick peptidoglycan layer) and diderms (with two cell membranes, and mostly Gram-negative, due to a thin peptidoglycan layer sandwiched between the two membranes). Photosynthetic species are spread among the taxonomic groups, some having type I reaction centers (RCI in monoderm phylum Firmicutes; and diderm phyla Acidobacteria and Chlorobi), others with type II reaction centers (RCII in monoderm phylum Chloroflexi; and diderm taxa Gemmatimonadetes, and alpha-, beta-, and gamma-Proteobacteria), and some containing both (RCI and RCII, only in diderm phylum Cyanobacteria). In most bacterial phylograms, photosystem types and diderm taxa are polyphyletic. A more parsimonious arrangement, which is supported by photosystem evolution, as well as additional sets of molecular characters, suggests that endosymbiotic events resulted in the formation of the diderms. In the model presented, monoderms readily form a monophyletic group, while diderms are produced by at least two endosymbiotic events, followed by additional evolutionary changes. © 2020, The Author(s). 
650 0 4 |a Acidobacteria 
650 0 4 |a Bacteria 
650 0 4 |a Bacteria (microorganisms) 
650 0 4 |a bacterium 
650 0 4 |a bacterium 
650 0 4 |a cell component 
650 0 4 |a Chlorobi 
650 0 4 |a Chloroflexi 
650 0 4 |a Cyanobacteria 
650 0 4 |a Diderms 
650 0 4 |a Endosymbiotic 
650 0 4 |a evolutionary biology 
650 0 4 |a Firmicutes 
650 0 4 |a fuel cell 
650 0 4 |a Gammaproteobacteria 
650 0 4 |a Gemmatimonadetes 
650 0 4 |a Gram positive bacterium 
650 0 4 |a Gram-negative 
650 0 4 |a Gram-positive 
650 0 4 |a Gram-Positive Bacteria 
650 0 4 |a membrane 
650 0 4 |a microbial activity 
650 0 4 |a Monoderms 
650 0 4 |a Negibacteria 
650 0 4 |a photosynthesis 
650 0 4 |a Photosynthesis 
650 0 4 |a Photosynthesis 
650 0 4 |a phylogeny 
650 0 4 |a Phylogeny 
650 0 4 |a Posibacteria 
650 0 4 |a symbiosis 
650 0 4 |a Symbiosis 
650 0 4 |a taxonomy 
700 1 |a Rogers, S.O.  |e author 
773 |t Acta Biotheoretica