Advanced Passive Thermal Control Materials and Devices for Spacecraft: A Review

In recent planetary exploration space missions, spacecraft are exposed to severe thermal environments that are sometimes more extreme than those experienced in earth orbits. The development of advanced thermal control materials and devices together with reliable and accurate measurements of their th...

Full description

Bibliographic Details
Main Authors: Nagano, H. (Author), Nagasaka, Y. (Author), Ohnishi, A. (Author), Tachikawa, S. (Author)
Format: Article
Language:English
Published: Springer 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03344nam a2200505Ia 4500
001 10.1007-s10765-022-03010-3
008 220510s2022 CNT 000 0 und d
020 |a 0195928X (ISSN) 
245 1 0 |a Advanced Passive Thermal Control Materials and Devices for Spacecraft: A Review 
260 0 |b Springer  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s10765-022-03010-3 
520 3 |a In recent planetary exploration space missions, spacecraft are exposed to severe thermal environments that are sometimes more extreme than those experienced in earth orbits. The development of advanced thermal control materials and devices together with reliable and accurate measurements of their thermophysical properties are needed for the development of systems designed to meet the engineering challenges associated with these space missions. We provide a comprehensive review of the state-of-the-art advanced passive thermal control materials and devices that are available for space applications, specifically, variable emissivity thermal control materials and microelectromechanical systems (MEMS), radiofrequency (RF)-transparent and/or tunable solar absorptivity and total hemispherical emissivity thermal control materials, and a passive re-deployable radiator with advanced materials and insulation. Prior to our in-depth review of these thermal control materials, we briefly summarize the thermal environments surrounding spacecraft, the characteristics of thermophysical properties for spacecraft materials that differ from those of materials for ground use, and the significance of solar absorptivity and total hemispherical emissivity for passive thermal control in space. In all four topics of materials and devices, the following subjects are overviewed: the basic principle of passive thermal control techniques in space, the measurement of thermophysical properties of those novel materials, simulation and/or on-orbit verification thermal performance tests, degradation tests in space environments, and some aspects of the implementation of the above-described materials and devices in actual space missions. © 2022, The Author(s). 
650 0 4 |a Earth (planet) 
650 0 4 |a Electromagnetic wave emission 
650 0 4 |a Electromechanical devices 
650 0 4 |a Emissivity 
650 0 4 |a Environmental testing 
650 0 4 |a Graphite sheets 
650 0 4 |a Interplanetary flight 
650 0 4 |a Interplanetary spacecraft 
650 0 4 |a La1−xsrxMnO3 
650 0 4 |a La1−xSrxMnO3 
650 0 4 |a MEMS 
650 0 4 |a Multilayer insulation 
650 0 4 |a Multi-layer insulation 
650 0 4 |a Orbits 
650 0 4 |a Polyimide form 
650 0 4 |a Pyrolytic graphite 
650 0 4 |a Pyrolytic graphite sheet 
650 0 4 |a Solar absorptivity 
650 0 4 |a Space applications 
650 0 4 |a Space research 
650 0 4 |a Thermal conductivity 
650 0 4 |a Thermal control devices 
650 0 4 |a Thermal control materials 
650 0 4 |a Thermal Engineering 
650 0 4 |a Thermal insulating materials 
650 0 4 |a Thermal insulation 
650 0 4 |a Thermal variables control 
650 0 4 |a Variable emissivity material 
700 1 |a Nagano, H.  |e author 
700 1 |a Nagasaka, Y.  |e author 
700 1 |a Ohnishi, A.  |e author 
700 1 |a Tachikawa, S.  |e author 
773 |t International Journal of Thermophysics