Multiscale Modelling of De Novo Anaerobic Granulation

A multiscale mathematical model is presented to describe de novo granulation, and the evolution of multispecies granular biofilms, in a continuously fed bioreactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The equation governing the free boundary is derived f...

Full description

Bibliographic Details
Main Authors: Collins, G. (Author), D’Acunto, B. (Author), Frunzo, L. (Author), Mattei, M.R (Author), Russo, F. (Author), Tenore, A. (Author)
Format: Article
Language:English
Published: Springer 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02894nam a2200397Ia 4500
001 10.1007-s11538-021-00951-y
008 220427s2021 CNT 000 0 und d
020 |a 00928240 (ISSN) 
245 1 0 |a Multiscale Modelling of De Novo Anaerobic Granulation 
260 0 |b Springer  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s11538-021-00951-y 
520 3 |a A multiscale mathematical model is presented to describe de novo granulation, and the evolution of multispecies granular biofilms, in a continuously fed bioreactor. The granule is modelled as a spherical free boundary domain with radial symmetry. The equation governing the free boundary is derived from global mass balance considerations and takes into account the growth of sessile biomass as well as exchange fluxes with the bulk liquid. Starting from a vanishing initial value, the expansion of the free boundary is initiated by the attachment process, which depends on the microbial species concentrations within the bulk liquid and their specific attachment velocity. Nonlinear hyperbolic PDEs model the growth of the sessile microbial species, while quasi-linear parabolic PDEs govern the dynamics of substrates and invading species within the granular biofilm. Nonlinear ODEs govern the evolution of soluble substrates and planktonic biomass within the bulk liquid. The model is applied to an anaerobic, granular-based bioreactor system, and solved numerically to test its qualitative behaviour and explore the main aspects of de novo anaerobic granulation: ecology, biomass distribution, relative abundance, dimensional evolution of the granules and soluble substrates, and planktonic biomass dynamics within the bioreactor. The numerical results confirm that the model accurately describes the ecology and the concentrically layered structure of anaerobic granules observed experimentally, and that it can predict the effects on the process of significant factors, such as influent wastewater composition; granulation properties of planktonic biomass; biomass density; detachment intensity; and number of granules. © 2021, The Author(s). 
650 0 4 |a Anaerobic digestion 
650 0 4 |a anaerobic growth 
650 0 4 |a Anaerobiosis 
650 0 4 |a biofilm 
650 0 4 |a Biofilm 
650 0 4 |a Biofilms 
650 0 4 |a biological model 
650 0 4 |a biomass 
650 0 4 |a Biomass 
650 0 4 |a bioreactor 
650 0 4 |a Bioreactors 
650 0 4 |a Free boundary value problem 
650 0 4 |a Granulation 
650 0 4 |a Mathematical Concepts 
650 0 4 |a mathematical phenomena 
650 0 4 |a Models, Biological 
650 0 4 |a Spherical symmetry 
700 1 |a Collins, G.  |e author 
700 1 |a D’Acunto, B.  |e author 
700 1 |a Frunzo, L.  |e author 
700 1 |a Mattei, M.R.  |e author 
700 1 |a Russo, F.  |e author 
700 1 |a Tenore, A.  |e author 
773 |t Bulletin of Mathematical Biology