|
|
|
|
LEADER |
01385nam a2200373Ia 4500 |
001 |
10.1007-s12043-022-02319-w |
008 |
220425s2022 CNT 000 0 und d |
020 |
|
|
|a 03044289 (ISSN)
|
245 |
1 |
0 |
|a Intrinsic decoherence for the displaced harmonic oscillator
|
260 |
|
0 |
|b Springer
|c 2022
|
856 |
|
|
|z View Fulltext in Publisher
|u https://doi.org/10.1007/s12043-022-02319-w
|
520 |
3 |
|
|a By using the complete solution of the Milburn equation (beyond the Lindblad form that it is generally used) that describes intrinsic decoherence, we studied the decaying dynamics of a displaced harmonic oscillator. We calculated the expectation values of position quadrature and the number operator in the initial coherent and squeezed states. © 2022, Indian Academy of Sciences.
|
650 |
0 |
4 |
|a +k
|
650 |
0 |
4 |
|a 03.65.
|
650 |
0 |
4 |
|a 03.65.Ud
|
650 |
0 |
4 |
|a 03.65.-w
|
650 |
0 |
4 |
|a 03.65.Yz
|
650 |
0 |
4 |
|a 03.70.
|
650 |
0 |
4 |
|a 03.70.+k
|
650 |
0 |
4 |
|a Decoherence
|
650 |
0 |
4 |
|a Decoherence
|
650 |
0 |
4 |
|a Harmonic analysis
|
650 |
0 |
4 |
|a harmonic oscillator
|
650 |
0 |
4 |
|a Harmonic oscillators
|
650 |
0 |
4 |
|a Oscillators (mechanical)
|
650 |
0 |
4 |
|a Quantum optics
|
650 |
0 |
4 |
|a Squeezed state
|
650 |
0 |
4 |
|a squeezed states
|
650 |
0 |
4 |
|a Ud
|
650 |
0 |
4 |
|a -w
|
650 |
0 |
4 |
|a Yz
|
700 |
1 |
|
|a Moya-Cessa, H.M.
|e author
|
700 |
1 |
|
|a R Urzúa, A.
|e author
|
773 |
|
|
|t Pramana - Journal of Physics
|