Algae-Based Beneficial Re-use of Carbon Emissions Using a Novel Photobioreactor: a Techno-Economic and Life Cycle Analysis

Despite the many advantages of microalgae, the feasibility of large-scale cultivation requires significant amounts of carbon dioxide (CO2) to enable high growth rates. A synergistic union typically proposed for the supply of CO2 is the coupling of algal cultivation with emissions from power plants....

Full description

Bibliographic Details
Main Authors: Crocker, M. (Author), Crofcheck, C. (Author), Groppo, J. (Author), Quinn, J.C (Author), Quiroz, D. (Author), Shea, A. (Author), Wilson, M.H (Author)
Format: Article
Language:English
Published: Springer 2021
Subjects:
Tea
Online Access:View Fulltext in Publisher
LEADER 03199nam a2200553Ia 4500
001 10.1007-s12155-020-10178-9
008 220427s2021 CNT 000 0 und d
020 |a 19391234 (ISSN) 
245 1 0 |a Algae-Based Beneficial Re-use of Carbon Emissions Using a Novel Photobioreactor: a Techno-Economic and Life Cycle Analysis 
260 0 |b Springer  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s12155-020-10178-9 
520 3 |a Despite the many advantages of microalgae, the feasibility of large-scale cultivation requires significant amounts of carbon dioxide (CO2) to enable high growth rates. A synergistic union typically proposed for the supply of CO2 is the coupling of algal cultivation with emissions from power plants. This study investigates the sustainability of a novel microalgae platform coupled with coal-based flue gas. The proposed system consists of a novel photobioreactor (PBR) for the production of biomass followed by a two-stage dewatering process. A systems model, which quantifies the CO2 and energy consumption of the proposed system, was developed, and the minimum biomass selling price (MBSP) was determined by a techno-economic analysis (TEA). TEA results indicate that a facility with the capacity to capture 30% of the emissions from a 1-MW power plant requires a biomass production of 1280 metric ton per year, which when scaled to a nth of kind facility can produce biomass at a MBSP of   |2 322 per ton. The environmental impact of the proposed facility was determined by a life cycle assessment methodology, and results indicate a carbon capture potential of 1.16 × 104 metric tons of CO2 equivalent. In addition, an energy analysis indicates a desirable net energy ratio of 0.1, which is lower than conventional PBRs. Discussion focuses on the requirements to reduce biomass production cost, including research investment areas for increasing productivity while decreasing energy requirements. © 2020, Springer Science+Business Media, LLC, part of Springer Nature. 
650 0 4 |a Algae 
650 0 4 |a Algal cultivations 
650 0 4 |a Artificial life 
650 0 4 |a Biomass 
650 0 4 |a Biomass productions 
650 0 4 |a Bioplastic 
650 0 4 |a Carbon dioxide 
650 0 4 |a Carbon dioxide 
650 0 4 |a Carbon dioxide process 
650 0 4 |a Cost 
650 0 4 |a Costs 
650 0 4 |a Culture 
650 0 4 |a Economic analysis 
650 0 4 |a Energy requirements 
650 0 4 |a Energy utilization 
650 0 4 |a Environmental impact 
650 0 4 |a Investments 
650 0 4 |a Large scale cultivations 
650 0 4 |a Life cycle 
650 0 4 |a Life cycle analysis 
650 0 4 |a Life Cycle Assessment (LCA) 
650 0 4 |a Microalgae 
650 0 4 |a Microorganisms 
650 0 4 |a Photobioreactors 
650 0 4 |a Power plants 
650 0 4 |a Research investment 
650 0 4 |a Sustainable development 
650 0 4 |a Tea 
650 0 4 |a Techno-Economic analysis 
700 1 |a Crocker, M.  |e author 
700 1 |a Crofcheck, C.  |e author 
700 1 |a Groppo, J.  |e author 
700 1 |a Quinn, J.C.  |e author 
700 1 |a Quiroz, D.  |e author 
700 1 |a Shea, A.  |e author 
700 1 |a Wilson, M.H.  |e author 
773 |t Bioenergy Research