Dynamics of cavity soliton driven by chirped optical pulses in Kerr resonators

Recent researches have demonstrated that pulsed driving is an effective method to increase the temporal overlap between cavity soliton (CS) and pump field, thereby increasing the pump-to-comb conversion efficiency. The amplitude-modulated inhomogeneity of the background wave causes the solitons to d...

Full description

Bibliographic Details
Main Authors: Huang, T. (Author), Pan, J. (Author), Shum, P.P (Author), Wu, Z. (Author), Xu, C. (Author), Zhang, J. (Author)
Format: Article
Language:English
Published: Higher Education Press Limited Company 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02634nam a2200385Ia 4500
001 10.1007-s12200-022-00018-3
008 220510s2022 CNT 000 0 und d
020 |a 20952759 (ISSN) 
245 1 0 |a Dynamics of cavity soliton driven by chirped optical pulses in Kerr resonators 
260 0 |b Higher Education Press Limited Company  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s12200-022-00018-3 
520 3 |a Recent researches have demonstrated that pulsed driving is an effective method to increase the temporal overlap between cavity soliton (CS) and pump field, thereby increasing the pump-to-comb conversion efficiency. The amplitude-modulated inhomogeneity of the background wave causes the solitons to drift toward edges of the driving pulse. To eliminate the multiple temporal trapping positions, induced by the spontaneous symmetry breaking, we propose the chirped pulse driving for deterministic single soliton generation. We theoretically explain the physical mechanism of the chirp pulse driving, as the combination of amplitude and phase modulation. Our numerical simulations demonstrate the chirp is responsible for the single soliton generation. A detailed investigation for dynamics of CSs sustained by chirped pulses, shows the recovery of spontaneous symmetry breaking. In addition, the desynchronized chirped pulse driving is also considered here. Considering a weak chirp parameter, the desynchronization-dependent trapping position diagram is divided into multiple areas including two CSs, a single CS, two oscillating CSs, and no CS. With a sufficient chirp parameter considered, the trapping position curve becomes a monotonous function of the desynchronized drift velocity, which indicates deterministic single soliton generation. Graphic Abstract: [Figure not available: see fulltext.] © 2022, The Author(s). 
650 0 4 |a Cavity soliton 
650 0 4 |a Cavity soliton (CS) 
650 0 4 |a Cavity solitons 
650 0 4 |a Chirp modulation 
650 0 4 |a Chirped pulse 
650 0 4 |a Chirped pulse driving 
650 0 4 |a Chirped pulse driving 
650 0 4 |a Deterministic single soliton 
650 0 4 |a Deterministic single soliton 
650 0 4 |a Deterministics 
650 0 4 |a Optical pumping 
650 0 4 |a Pulse driving 
650 0 4 |a Single soliton 
650 0 4 |a Soliton generation 
650 0 4 |a Solitons 
650 0 4 |a Spontaneous symmetry breaking 
700 1 |a Huang, T.  |e author 
700 1 |a Pan, J.  |e author 
700 1 |a Shum, P.P.  |e author 
700 1 |a Wu, Z.  |e author 
700 1 |a Xu, C.  |e author 
700 1 |a Zhang, J.  |e author 
773 |t Frontiers of Optoelectronics