Recommendations for simulating and measuring with biofabricated lung equivalent materials based on atomic composition analysis

Monte Carlo simulations of lung equivalent materials often involve the density being artificially lowered rather than a true lung tissue (or equivalent plastic) and air composition being simulated. This study used atomic composition analysis to test the suitability of this method. Atomic composition...

Full description

Bibliographic Details
Main Authors: Charles, P.H (Author), Crowe, S. (Author), Kairn, T. (Author)
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2021
Subjects:
ABS
PLA
Online Access:View Fulltext in Publisher
LEADER 03272nam a2200745Ia 4500
001 10.1007-s13246-021-00979-3
008 220427s2021 CNT 000 0 und d
020 |a 26624729 (ISSN) 
245 1 0 |a Recommendations for simulating and measuring with biofabricated lung equivalent materials based on atomic composition analysis 
260 0 |b Springer Science and Business Media Deutschland GmbH  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s13246-021-00979-3 
520 3 |a Monte Carlo simulations of lung equivalent materials often involve the density being artificially lowered rather than a true lung tissue (or equivalent plastic) and air composition being simulated. This study used atomic composition analysis to test the suitability of this method. Atomic composition analysis was also used to test the suitability of 3D printing PLA or ABS with air to simulate lung tissue. It was found that there was minimal atomic composition difference when using an artificially lowered density, with a 0.8 % difference in Nitrogen the largest observed. Therefore, excluding infill pattern effects, lowering the density of the lung tissue (or plastic) in simulations should be sufficiently accurate to simulate an inhaled lung, without the need to explicitly include the air component. The average electron density of 3D printed PLA and air, and ABS and air were just 0.3 % and 1.3 % different to inhaled lung, confirming their adequacy for MV photon dosimetry. However large average atomic number differences (5.6 % and 20.4 % respectively) mean that they are unlikely to be suitable for kV photon dosimetry. © 2021, Australasian College of Physical Scientists and Engineers in Medicine. 
650 0 4 |a 3D printers 
650 0 4 |a 3D printing 
650 0 4 |a 3-D printing 
650 0 4 |a ABS 
650 0 4 |a Air components 
650 0 4 |a argon 
650 0 4 |a Article 
650 0 4 |a Atomic composition 
650 0 4 |a Atomic composition analysis 
650 0 4 |a Atomic compositions 
650 0 4 |a Atomic numbers 
650 0 4 |a Atoms 
650 0 4 |a Biological organs 
650 0 4 |a biomaterial 
650 0 4 |a carbon 
650 0 4 |a chemical composition 
650 0 4 |a chlorine 
650 0 4 |a dosimetry 
650 0 4 |a Dosimetry 
650 0 4 |a hydrogen 
650 0 4 |a lung 
650 0 4 |a Lung 
650 0 4 |a Lung 
650 0 4 |a lung parenchyma 
650 0 4 |a Lung tissue 
650 0 4 |a mathematical computing 
650 0 4 |a Monte Carlo 
650 0 4 |a Monte Carlo method 
650 0 4 |a Monte Carlo Method 
650 0 4 |a Monte Carlo methods 
650 0 4 |a nitrogen 
650 0 4 |a oxygen 
650 0 4 |a Pattern effect 
650 0 4 |a phosphorus 
650 0 4 |a photon 
650 0 4 |a Photons 
650 0 4 |a Photons 
650 0 4 |a physical chemistry 
650 0 4 |a physical parameters 
650 0 4 |a PLA 
650 0 4 |a potassium 
650 0 4 |a Printing, Three-Dimensional 
650 0 4 |a radiometry 
650 0 4 |a Radiometry 
650 0 4 |a silicon 
650 0 4 |a sodium 
650 0 4 |a three dimensional bioprinting 
650 0 4 |a three dimensional printing 
650 0 4 |a Tissue 
700 1 |a Charles, P.H.  |e author 
700 1 |a Crowe, S.  |e author 
700 1 |a Kairn, T.  |e author 
773 |t Physical and Engineering Sciences in Medicine