Missing data imputation of MAGDAS-9’s ground electromagnetism with supervised machine learning and conventional statistical analysis models

Data imputation studies include reconstruction or estimation of imperfect data gaps caused by system sensing failure, and non-responsive data transmission remains an open issue. In space weather applications, imputation of ground electromagnetism is significant in capturing the complex interaction o...

Full description

Bibliographic Details
Main Authors: Akimasa, Y. (Author), H., M.A (Author), Huzaimy Jusoh, M. (Author), Iffah Abd Latiff, Z. (Author), K.A., N.D (Author), Md Tahir, N. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Series:Alexandria Engineering Journal
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 03314nam a2200409Ia 4500
001 10.1016-j.aej.2021.04.096
008 220124s2022 CNT 000 0 und d
020 |a 11100168 (ISSN) 
245 1 0 |a Missing data imputation of MAGDAS-9’s ground electromagnetism with supervised machine learning and conventional statistical analysis models 
260 0 |b Elsevier B.V.  |c 2022 
490 1 |a Alexandria Engineering Journal 
650 0 4 |a Benchmarking 
650 0 4 |a Data gap 
650 0 4 |a Errors 
650 0 4 |a Geomagnetic storm 
650 0 4 |a Geomagnetism 
650 0 4 |a Imputation 
650 0 4 |a Mean absolute error 
650 0 4 |a Mean square error 
650 0 4 |a Means square errors 
650 0 4 |a Missing dataset 
650 0 4 |a Neural networks 
650 0 4 |a Performance 
650 0 4 |a Space weather 
650 0 4 |a Supervised learning 
650 0 4 |a Supervised machine learning 
650 0 4 |a Support vector regressions 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.aej.2021.04.096 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85107441696&doi=10.1016%2fj.aej.2021.04.096&partnerID=40&md5=323a2d67c3a327e9b17b974bbce98404 
520 3 |a Data imputation studies include reconstruction or estimation of imperfect data gaps caused by system sensing failure, and non-responsive data transmission remains an open issue. In space weather applications, imputation of ground electromagnetism is significant in capturing the complex interaction of sun–earth prior to the subsequent analysis of the space weather effects. Key contributions to the demonstration of supervised machine learning (ML) imputation approach with artificial neural network, K-nearest neighbour, support vector regression (SVR), and General Regression Neural Network (GRNN) for MAGDAS-9 ground electromagnetism dataset have not yet been established. A total of 1,585,950 data points were analysed with supervised ML models which included performance benchmark with statistical analysis namely zero value substitution, listwise deletion, mean substitution, and hot deck imputation. To achieve low reconstruction errors, different imputation models with hyperparameter tuned settings are varied, and computational time execution has been shown to contribute to imputation performance. Performance metrics measured by mean square error (MSE), mean absolute error (MAE),mean absolute percentage error (MAPE), and execution time respectively demonstrate the capability of SVR to perfectly impute missing data for all ground electromagnetism components at an average of 0.314 MSE, 0.738 MAPE, closeness to 0.510 MAE and 0.91-second at various percentage level of data missingness. A comparison with traditional imputation shows that the supervised ML with SVR model has improved imputation performance by up to 80% of data gap. The outcome of the proposed imputation will benefit space weather applications for event characterisation, which will cover a large number of missing data in the MAGDAS-9 dataset. © 2021 THE AUTHORS 
700 1 0 |a Akimasa, Y.  |e author 
700 1 0 |a H., M.A.  |e author 
700 1 0 |a Huzaimy Jusoh, M.  |e author 
700 1 0 |a Iffah Abd Latiff, Z.  |e author 
700 1 0 |a K.A., N.D.  |e author 
700 1 0 |a Md Tahir, N.  |e author 
773 |t Alexandria Engineering Journal