Further results on super graceful labeling of graphs

Let G=(V(G),E(G)) be a simple, finite and undirected graph of order p and size q. A bijection f:V(G)∪E(G)→{k,k+1,k+2,…,k+p+q−1} such that f(uv)=|f(u)−f(v)| for every edge uv∈E(G) is said to be a k-super graceful labeling of G. We say G is k-super graceful if it admits a k-super graceful labeling. Fo...

Full description

Bibliographic Details
Main Authors: Lau, G.-C (Author), Ng, H.-K (Author), Shiu, W.C (Author)
Format: Article
Language:English
Published: Kalasalingam University 2016
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 01690nam a2200205Ia 4500
001 10.1016-j.akcej.2016.06.002
008 220120s2016 CNT 000 0 und d
020 |a 09728600 (ISSN) 
245 1 0 |a Further results on super graceful labeling of graphs 
260 0 |b Kalasalingam University  |c 2016 
520 3 |a Let G=(V(G),E(G)) be a simple, finite and undirected graph of order p and size q. A bijection f:V(G)∪E(G)→{k,k+1,k+2,…,k+p+q−1} such that f(uv)=|f(u)−f(v)| for every edge uv∈E(G) is said to be a k-super graceful labeling of G. We say G is k-super graceful if it admits a k-super graceful labeling. For k=1, the function f is called a super graceful labeling and a graph is super graceful if it admits a super graceful labeling. In this paper, we study the super gracefulness of complete graph, the disjoint union of certain star graphs, the complete tripartite graphs K(1,1,n), and certain families of trees. We also present four methods of constructing new super graceful graphs. In particular, all trees of order at most 7 are super graceful. We conjecture that all trees are super graceful. © 2016 Kalasalingam University 
650 0 4 |a Graceful labeling 
650 0 4 |a Super graceful labeling 
650 0 4 |a Tree 
700 1 0 |a Lau, G.-C.  |e author 
700 1 0 |a Ng, H.-K.  |e author 
700 1 0 |a Shiu, W.C.  |e author 
773 |t AKCE International Journal of Graphs and Combinatorics  |x 09728600 (ISSN)  |g 13 2, 200-209 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.akcej.2016.06.002 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84977644711&doi=10.1016%2fj.akcej.2016.06.002&partnerID=40&md5=93ada2fb30a63e513b4271d2755b8db5