Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues

To increase the understanding of hydrothermal carbonization (HTC) of lignocellulosic biomass residues, four feedstocks: giant bamboo, coffee wood, eucalyptus, and coffee parchment, were studied. The effect of operating conditions on the products in terms of yield, composition and energy densificatio...

Full description

Bibliographic Details
Main Authors: Cardoso, M. (Author), Matheus de Almeida, G. (Author), Mendoza Martinez, C.L (Author), Saari, J. (Author), Sermyagina, E. (Author), Silva de Jesus, M. (Author), Vakkilainen, E. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03236nam a2200577Ia 4500
001 10.1016-j.biombioe.2021.106004
008 220427s2021 CNT 000 0 und d
020 |a 09619534 (ISSN) 
245 1 0 |a Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues 
260 0 |b Elsevier Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.biombioe.2021.106004 
520 3 |a To increase the understanding of hydrothermal carbonization (HTC) of lignocellulosic biomass residues, four feedstocks: giant bamboo, coffee wood, eucalyptus, and coffee parchment, were studied. The effect of operating conditions on the products in terms of yield, composition and energy densification were quantified. Each feedstock was treated for 3 h at temperatures of 180, 200, 220 and 240 °C. For all samples, the higher heating value (HHV), fixed carbon content and energy density increased with increasing reaction severity, while volatile matter content and mass yield decreased. The HHV of hydrochar samples obtained at temperatures ≥220 °C were in the range of 24.6–29.2 MJ kg−1 and indicated the high potential of these materials for fuel applications. The mass yields varied in the range of 46.5–56.9%, with the exception for coffee parchment, where the lower values of 34.4–46.0% were obtained. The fixed carbon varied from 33.8% to 53.0%. The HTC liquor had pH values of 2.9–4.4 due to organic acids. The results were used to model and evaluate different industrial-scale HTC simulation cases. The overall efficiency was similar within all studied biomasses. The integration with a bio-fired power plant allows simplification of the process while also bringing efficiency gains. All studied biomasses appear to be suitable for energy and value-added products generation through HTC treatment. Coffee residues, which have received little research consideration previously, responded well. © 2021 The Authors 
650 0 4 |a agroforestry 
650 0 4 |a Bamboo 
650 0 4 |a Biomass 
650 0 4 |a Biomass conversion 
650 0 4 |a biomass power 
650 0 4 |a Calorific value 
650 0 4 |a Carbon 
650 0 4 |a Carbonization 
650 0 4 |a coffee 
650 0 4 |a Coffee 
650 0 4 |a Coffee parchment 
650 0 4 |a Dendrocalamus giganteus 
650 0 4 |a energy efficiency 
650 0 4 |a Eucalyptus 
650 0 4 |a Eucalyptus 
650 0 4 |a Feedstocks 
650 0 4 |a Fuel applications 
650 0 4 |a heating 
650 0 4 |a Higher heating value 
650 0 4 |a hydrothermal activity 
650 0 4 |a Hydrothermal carbonization 
650 0 4 |a Hydrothermal carbonization 
650 0 4 |a Industrial integration 
650 0 4 |a Industrial scale 
650 0 4 |a Operating condition 
650 0 4 |a Overall efficiency 
650 0 4 |a plant residue 
650 0 4 |a power plant 
650 0 4 |a Thermochemistry 
650 0 4 |a Value added products 
650 0 4 |a Volatile matters 
700 1 |a Cardoso, M.  |e author 
700 1 |a Matheus de Almeida, G.  |e author 
700 1 |a Mendoza Martinez, C.L.  |e author 
700 1 |a Saari, J.  |e author 
700 1 |a Sermyagina, E.  |e author 
700 1 |a Silva de Jesus, M.  |e author 
700 1 |a Vakkilainen, E.  |e author 
773 |t Biomass and Bioenergy