A biochemically-realisable relational model of the self-manufacturing cell

As shown by Hofmeyr, the processes in the living cell can be divided into three classes of efficient causes that produce each other, so making the cell closed to efficient causation, the hallmark of an organism. They are the enzyme catalysts of covalent metabolic chemistry, the intracellular milieu...

Full description

Bibliographic Details
Main Author: Hofmeyr, J.-H.S (Author)
Format: Article
Language:English
Published: Elsevier Ireland Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03522nam a2200661Ia 4500
001 10.1016-j.biosystems.2021.104463
008 220427s2021 CNT 000 0 und d
020 |a 03032647 (ISSN) 
245 1 0 |a A biochemically-realisable relational model of the self-manufacturing cell 
260 0 |b Elsevier Ireland Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.biosystems.2021.104463 
520 3 |a As shown by Hofmeyr, the processes in the living cell can be divided into three classes of efficient causes that produce each other, so making the cell closed to efficient causation, the hallmark of an organism. They are the enzyme catalysts of covalent metabolic chemistry, the intracellular milieu that drives the supramolecular processes of chaperone-assisted folding and self-assembly of polypeptides and nucleic acids into functional catalysts and transporters, and the membrane transporters that maintain the intracellular milieu, in particular its electrolyte composition. Each class of efficient cause can be modelled as a relational diagram in the form of a mapping in graph-theoretic form, and a minimal model of a self-manufacturing system that is closed to efficient causation can be constructed from these three mappings using the formalism of relational biology. This fabrication-assembly or (F,A)-system serves as an alternative to Robert Rosen's replicative metabolism-repair or (M,R)-system, which has been notoriously problematic to realise in terms of real biochemical processes. A key feature of the model is the explicit incorporation of formal cause, which arrests the infinite regress that plagues all relational models of the cell. The (F,A)-system is extended into a detailed relational model of the self-manufacturing cell that has a clear biochemical realisation. This (F,A) cell model allows the interpretation and visualisation of concepts such as the metabolism and repair components of Rosen's (M,R)-system, John von Neumann's universal constructor, Howard Pattee's symbol-function split via the symbol-folding transformation, Marcello Barbieri's genotype–ribotype–phenotype ontology, and Tibor Gánti's chemoton. © 2021 Elsevier B.V. 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a Autopoiesis 
650 0 4 |a biochemical analysis 
650 0 4 |a biochemical composition 
650 0 4 |a biochemistry 
650 0 4 |a biological model 
650 0 4 |a catalyst 
650 0 4 |a cell 
650 0 4 |a cell body 
650 0 4 |a Cell Body 
650 0 4 |a cell function 
650 0 4 |a cell membrane 
650 0 4 |a Cell Membrane 
650 0 4 |a chaperone 
650 0 4 |a Closure to efficient causation 
650 0 4 |a covalent bond 
650 0 4 |a diagram 
650 0 4 |a electrolyte 
650 0 4 |a electrolyte 
650 0 4 |a Fabrication 
650 0 4 |a Formal cause 
650 0 4 |a genotype 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a metabolism 
650 0 4 |a metabolism 
650 0 4 |a Metabolism-repair systems 
650 0 4 |a model 
650 0 4 |a Models, Biological 
650 0 4 |a nucleic acid 
650 0 4 |a numerical model 
650 0 4 |a ontology 
650 0 4 |a phenotype 
650 0 4 |a polypeptide 
650 0 4 |a procedures 
650 0 4 |a protein assembly 
650 0 4 |a protein folding 
650 0 4 |a Relational biology 
650 0 4 |a Self-assembly 
650 0 4 |a Self-manufacture 
650 0 4 |a systems biology 
650 0 4 |a Systems Biology 
700 1 |a Hofmeyr, J.-H.S.  |e author 
773 |t BioSystems