Spatial waves and temporal oscillations in vertebrate limb development

The mesenchymal tissue of the developing vertebrate limb bud is an excitable medium that sustains both spatial and temporal periodic phenomena. The first of these is the outcome of general Turing-type reaction-diffusion dynamics that generate spatial standing waves of cell condensations. These conde...

Full description

Bibliographic Details
Main Authors: Bhat, R. (Author), Glimm, T. (Author), Newman, S.A (Author)
Format: Article
Language:English
Published: Elsevier Ireland Ltd 2021
Subjects:
bud
Online Access:View Fulltext in Publisher
LEADER 03600nam a2200793Ia 4500
001 10.1016-j.biosystems.2021.104502
008 220427s2021 CNT 000 0 und d
020 |a 03032647 (ISSN) 
245 1 0 |a Spatial waves and temporal oscillations in vertebrate limb development 
260 0 |b Elsevier Ireland Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.biosystems.2021.104502 
520 3 |a The mesenchymal tissue of the developing vertebrate limb bud is an excitable medium that sustains both spatial and temporal periodic phenomena. The first of these is the outcome of general Turing-type reaction-diffusion dynamics that generate spatial standing waves of cell condensations. These condensations are transformed into the nodules and rods of the cartilaginous, and eventually (in most species) the bony, endoskeleton. In the second, temporal periodicity results from intracellular regulatory dynamics that generate oscillations in the expression of one or more gene whose products modulate the spatial patterning system. Here we review experimental evidence from the chicken embryo, interpreted by a set of mathematical and computational models, that the spatial wave-forming system is based on two glycan-binding proteins, galectin-1A and galectin-8 in interaction with each other and the cells that produce them, and that the temporal oscillation occurs in the expression of the transcriptional coregulator Hes1. The multicellular synchronization of the Hes1 oscillation across the limb bud serves to coordinate the biochemical states of the mesenchymal cells globally, thereby refining and sharpening the spatial pattern. Significantly, the wave-forming reaction-diffusion-based mechanism itself, unlike most Turing-type systems, does not contain an oscillatory core, and may have evolved to this condition as it came to incorporate the cell-matrix adhesion module that enabled its pattern-forming capability. © 2021 The Authors 
650 0 4 |a adhesion 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Article 
650 0 4 |a biochemistry 
650 0 4 |a Biological Clocks 
650 0 4 |a biological rhythm 
650 0 4 |a bud 
650 0 4 |a cell component 
650 0 4 |a chicken 
650 0 4 |a computer model 
650 0 4 |a detection method 
650 0 4 |a diffusion 
650 0 4 |a Diffusion 
650 0 4 |a embryo 
650 0 4 |a Extremities 
650 0 4 |a Galectin 
650 0 4 |a galectin 1 
650 0 4 |a galectin 1a 
650 0 4 |a galectin 8 
650 0 4 |a Gallus gallus 
650 0 4 |a gene expression 
650 0 4 |a gene expression 
650 0 4 |a growth, development and aging 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a limb 
650 0 4 |a limb bud 
650 0 4 |a limb development 
650 0 4 |a Limb skeletogenesis 
650 0 4 |a Lyapunov function 
650 0 4 |a macroinvertebrate 
650 0 4 |a mathematical model 
650 0 4 |a matrix 
650 0 4 |a Morphogenetic field 
650 0 4 |a nonhuman 
650 0 4 |a oscillation 
650 0 4 |a oscillation 
650 0 4 |a periodicity 
650 0 4 |a periodicity 
650 0 4 |a periodicity 
650 0 4 |a Periodicity 
650 0 4 |a physiology 
650 0 4 |a Reaction-diffusion 
650 0 4 |a time factor 
650 0 4 |a Time Factors 
650 0 4 |a transcription factor HES 1 
650 0 4 |a unclassified drug 
650 0 4 |a Vertebrata 
650 0 4 |a vertebrate 
650 0 4 |a vertebrate 
650 0 4 |a vertebrate 
650 0 4 |a Vertebrates 
700 1 |a Bhat, R.  |e author 
700 1 |a Glimm, T.  |e author 
700 1 |a Newman, S.A.  |e author 
773 |t BioSystems