Metabolic limits on classical information processing by biological cells

Biological information processing is generally assumed to be classical. Measured cellular energy budgets of both prokaryotes and eukaryotes, however, fall orders of magnitude short of the power required to maintain classical states of protein conformation and localization at the Å, fs scales predic...

Full description

Bibliographic Details
Main Authors: Fields, C. (Author), Levin, M. (Author)
Format: Article
Language:English
Published: Elsevier Ireland Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03098nam a2200817Ia 4500
001 10.1016-j.biosystems.2021.104513
008 220427s2021 CNT 000 0 und d
020 |a 03032647 (ISSN) 
245 1 0 |a Metabolic limits on classical information processing by biological cells 
260 0 |b Elsevier Ireland Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.biosystems.2021.104513 
520 3 |a Biological information processing is generally assumed to be classical. Measured cellular energy budgets of both prokaryotes and eukaryotes, however, fall orders of magnitude short of the power required to maintain classical states of protein conformation and localization at the Å, fs scales predicted by single-molecule decoherence calculations and assumed by classical molecular dynamics models. We suggest that decoherence is limited to the immediate surroundings of the cell membrane and of intercompartmental boundaries within the cell, and that bulk cellular biochemistry implements quantum information processing. Detection of Bell-inequality violations in responses to perturbation of recently-separated sister cells would provide a sensitive test of this prediction. If it is correct, modeling both intra- and intercellular communication requires quantum theory. © 2021 Elsevier B.V. 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a article 
650 0 4 |a Biochemical Phenomena 
650 0 4 |a biochemistry 
650 0 4 |a biochemistry 
650 0 4 |a Bioenergetics 
650 0 4 |a bioenergy 
650 0 4 |a budget 
650 0 4 |a calculation 
650 0 4 |a cell component 
650 0 4 |a cell energy 
650 0 4 |a cell function 
650 0 4 |a cell membrane 
650 0 4 |a Cell Physiological Phenomena 
650 0 4 |a communication 
650 0 4 |a Decoherence 
650 0 4 |a detection method 
650 0 4 |a energy metabolism 
650 0 4 |a Energy Metabolism 
650 0 4 |a Eukaryota 
650 0 4 |a eukaryote 
650 0 4 |a eukaryotic cell 
650 0 4 |a Eukaryotic Cells 
650 0 4 |a female 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a intercellular signaling 
650 0 4 |a membrane 
650 0 4 |a metabolism 
650 0 4 |a metabolism 
650 0 4 |a Metabolism 
650 0 4 |a Models, Theoretical 
650 0 4 |a molecular dynamics 
650 0 4 |a molecular dynamics 
650 0 4 |a Molecular dynamics 
650 0 4 |a Molecular Dynamics Simulation 
650 0 4 |a nonhuman 
650 0 4 |a physiology 
650 0 4 |a prediction 
650 0 4 |a Prokaryota 
650 0 4 |a prokaryote 
650 0 4 |a prokaryotic cell 
650 0 4 |a Prokaryotic Cells 
650 0 4 |a protein 
650 0 4 |a protein conformation 
650 0 4 |a Protein conformation 
650 0 4 |a protein localization 
650 0 4 |a Protein localization 
650 0 4 |a quantum theory 
650 0 4 |a Quantum Theory 
650 0 4 |a signal transduction 
650 0 4 |a Signal Transduction 
650 0 4 |a theoretical model 
700 1 |a Fields, C.  |e author 
700 1 |a Levin, M.  |e author 
773 |t BioSystems