Comparison of seven shallow and deep regressors in continuous blood pressure and heart rate estimation using single-channel photoplethysmograms under three evaluation cases

Our objective is to compare seven blood pressure (BP) and heart rate (HR) estimation models based on shallow and deep regressors using single-channel photoplethysmograms (PPGs) under three evaluation cases. Non-invasive, cuffless, continuous, and simultaneous estimation of systolic BP, diastolic BP,...

Full description

Bibliographic Details
Main Authors: Hoshino, T. (Author), Kamei, S. (Author), Kanoga, S. (Author), Kobayashi, T. (Author), Ohmori, T. (Author), Tada, M. (Author), Uchiyama, M. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2023
Subjects:
PPG
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 03867nam a2200637Ia 4500
001 10.1016-j.bspc.2023.105029
008 230529s2023 CNT 000 0 und d
020 |a 17468094 (ISSN) 
245 1 0 |a Comparison of seven shallow and deep regressors in continuous blood pressure and heart rate estimation using single-channel photoplethysmograms under three evaluation cases 
260 0 |b Elsevier Ltd  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.bspc.2023.105029 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159565299&doi=10.1016%2fj.bspc.2023.105029&partnerID=40&md5=04345bc0c7333e46046546484c59016f 
520 3 |a Our objective is to compare seven blood pressure (BP) and heart rate (HR) estimation models based on shallow and deep regressors using single-channel photoplethysmograms (PPGs) under three evaluation cases. Non-invasive, cuffless, continuous, and simultaneous estimation of systolic BP, diastolic BP, and HR using only PPGs is valuable for routinely monitoring the health status using simple device configuration. However, the performances of regressors cannot be directly compared based on the metrics presented in their respective papers because they use different datasets and evaluation procedures. Therefore, we used a common dataset (containing 1811 patients) and prepared three evaluation cases in which the training and testing data included, partly included, and did not include data from the same subjects. Shallow models using hand-crafted features performed reasonably well, and when the training data contained data similar to the testing data, deep models using raw signals as input achieved accurate BP and HR estimation. The spectral–temporal residual network showed the highest performance, with modified PP-Net as the runner-up; this study revealed that they are strong candidates for non-invasive, cuffless, continuous, and simultaneous BP and HR estimation models using single-channel PPGs in clinical and daily-use scenarios. Furthermore, results showed that the estimation performances rely on the level of inclusion of same subjects’ data in the training and testing data. To address the discrepancy between pre-measured data domain and new user's data domain, we will investigate effective transfer learning techniques in the future work. The training and testing datasets used in this study are made public (https://drive.google.com/drive/folders/14nSeg0V-metCIs3LHPBH9tolxiyCN8eA?usp=share_link). © 2023 The Author(s) 
650 0 4 |a adult 
650 0 4 |a article 
650 0 4 |a Blood 
650 0 4 |a blood pressure 
650 0 4 |a Blood pressure 
650 0 4 |a controlled study 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a diastolic blood pressure 
650 0 4 |a Estimation models 
650 0 4 |a female 
650 0 4 |a health status 
650 0 4 |a Heart 
650 0 4 |a heart rate 
650 0 4 |a Heart rate 
650 0 4 |a Heart-rate 
650 0 4 |a human 
650 0 4 |a machine learning 
650 0 4 |a Machine learning 
650 0 4 |a Machine-learning 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a photoelectric plethysmography 
650 0 4 |a Photoplethysmogram 
650 0 4 |a PPG 
650 0 4 |a Rate estimation 
650 0 4 |a runner 
650 0 4 |a Single channels 
650 0 4 |a Statistical tests 
650 0 4 |a systolic blood pressure 
650 0 4 |a Testing data 
650 0 4 |a Training and testing 
650 0 4 |a Training data 
650 0 4 |a transfer of learning 
650 0 4 |a Well testing 
700 1 0 |a Hoshino, T.  |e author 
700 1 0 |a Kamei, S.  |e author 
700 1 0 |a Kanoga, S.  |e author 
700 1 0 |a Kobayashi, T.  |e author 
700 1 0 |a Ohmori, T.  |e author 
700 1 0 |a Tada, M.  |e author 
700 1 0 |a Uchiyama, M.  |e author 
773 |t Biomedical Signal Processing and Control