Structure–Activity Relationships of TiO2 nanoflower-coated Porous Ti Anodes in Electro-catazone process

Electrochemical heterogeneous catalytic ozonation (E-catazone) process is a new advanced oxidation process for the efficient degradation of ozone-resistant pharmaceutical micropollutants (PMPs). The TiO2 nanoflower-coated porous Ti gas diffuser (TiO2-NF@PTGD) anode is crucial to the enhanced PMP deg...

Full description

Bibliographic Details
Main Authors: Cheng, S. (Author), Ding, X. (Author), Lai, S. (Author), Li, X. (Author), Liu, G. (Author), Xu, R. (Author), Xu, Z. (Author), Yao, H. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02827nam a2200289Ia 4500
001 10.1016-j.ceja.2022.100347
008 220718s2022 CNT 000 0 und d
020 |a 26668211 (ISSN) 
245 1 0 |a Structure–Activity Relationships of TiO2 nanoflower-coated Porous Ti Anodes in Electro-catazone process 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ceja.2022.100347 
520 3 |a Electrochemical heterogeneous catalytic ozonation (E-catazone) process is a new advanced oxidation process for the efficient degradation of ozone-resistant pharmaceutical micropollutants (PMPs). The TiO2 nanoflower-coated porous Ti gas diffuser (TiO2-NF@PTGD) anode is crucial to the enhanced PMP degradation, ozone decomposition, and ·OH production in the E-catazone process. However, the relationships and mechanisms between the TiO2-NF@PTGD surface properties and the decontamination ability of E-catazone remain unresolved. Thus, through modulating the TiO2-NF surface properties by varying the hydrothermal preparation conditions of TiO2-NF@PTGD anodes, this study investigated the structure–activity relationships between the anodes and the destruction of the ozone-resistant PMP para-chlorobenzoic acid (p-CBA) by E-catazone. The mechanism was further elucidated by material characterization, interfacial kinetics analysis, and reactive oxygen species (ROS) determination. The results showed that the TiO2-NF@PTGD surface properties, including morphology and surface adsorbed oxygen (Oad), were largely influenced by the hydrothermal conditions (time, NaOH concentration, and temperature) and that Oad, presenting surface active sites, showed a significant positive correlation with the p-CBA degradation efficiency, rate, interfacial kinetic properties, ozone decomposition, and ROS production. At the optimized surface properties of Oad proportion of 29.44% and interfacial kinetic constant of 7.00 × 10−5 M−1 s−1, the complete removal of p-CBA with the highest degradation rate of 6.50 × 10−3 s−1, largest instantaneous ozone demand of 6.56 mg L−1, and largest ·OH exposure of 4.39 × 10−10 M s (5 min) were achieved. This study provides the basic parameters for the scale up preparation of TiO2-NF@PTGD electrodes and E-catazone applications. © 2022 The Author(s) 
650 0 4 |a electro-catazone 
650 0 4 |a hydrothermal preparation 
650 0 4 |a pollutant degradation 
650 0 4 |a surface properties 
650 0 4 |a TiO2 nanoflower 
700 1 |a Cheng, S.  |e author 
700 1 |a Ding, X.  |e author 
700 1 |a Lai, S.  |e author 
700 1 |a Li, X.  |e author 
700 1 |a Li, X.  |e author 
700 1 |a Liu, G.  |e author 
700 1 |a Xu, R.  |e author 
700 1 |a Xu, Z.  |e author 
700 1 |a Yao, H.  |e author 
773 |t Chemical Engineering Journal Advances