BORAY: A ray tracing code for various magnetized plasma configurations

Ray tracing codes are useful to study the electromagnetic wave propagation and absorption in the geometrical optics approximation. In magnetized fusion plasma community, most ray tracing codes assume the plasma density and temperature be functions of the magnetic flux and study waves only inside the...

Full description

Bibliographic Details
Main Authors: Bai, Y.-K (Author), Banerjee, D. (Author), Li, J.-C (Author), Xie, H.-S (Author), Zhao, H.-Y (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04185nam a2200541Ia 4500
001 10.1016-j.cpc.2022.108363
008 220425s2022 CNT 000 0 und d
020 |a 00104655 (ISSN) 
245 1 0 |a BORAY: A ray tracing code for various magnetized plasma configurations 
260 0 |b Elsevier B.V.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.cpc.2022.108363 
520 3 |a Ray tracing codes are useful to study the electromagnetic wave propagation and absorption in the geometrical optics approximation. In magnetized fusion plasma community, most ray tracing codes assume the plasma density and temperature be functions of the magnetic flux and study waves only inside the last closed flux surface, which are sufficient for the present day tokamak. However, they are difficult to be used for configurations with open magnetic field line plasmas, such as mirror machine and field-reversed-configuration (FRC). We develop a ray tracing code in cylindrical coordinates (r,ϕ,z) to support arbitrary axisymmetric configurations with both closed and open field lines plasmas. For wave propagation, the cold plasma dispersion relation is usually sufficient, and we require the magnetic field B(r,z) and species densities ns0(r,z) profiles as input. For wave absorption, we require a further temperature Ts0(r,z) profile to solve a hot kinetic plasma dispersion relation. In difference to other ray tracing codes which calculate the imaginary part of wave vector k⊥,i for wave absorption, we calculate the imaginary part of wave frequency ωi, which is shown to be equivalent with the former technique under weak damping approximation. The code can use either numerical or analytical equilibrium. Examples and benchmarks with electron cyclotron wave, lower hybrid wave and ion cyclotron wave for tokamak, spherical tokamak (ST), FRC and mirror machine are shown. Program summary: Program Title: BORAY CPC Library link to program files: https://doi.org/10.17632/tnkrjdbcz8.1 Code Ocean capsule: https://codeocean.com/capsule/6205646 Licensing provisions: BSD 3-clause Programming language: Matlab Nature of problem: Solve the plasmas electromagnetic wave propagation and absorption in the geometrical optics approximation for magnetized plasmas based on ray tracing of plasma dispersion relation. In axisymmetric (r,z) coordinates, the code can be used for both closed and open field lines plasmas of various configurations such as tokamak, spherical tokamak, FRC and mirror machine. Solution method: Runge-Kutta time integral to solve ray tracing equations for wave propagation, and integral the imaginary part of the wave frequency in hot kinetic dispersion relation for wave absorption. Additional comments including restrictions and unusual features: Kinetic relativistic effects and collisional damping are not included in the present version yet. Only axisymmetric two-dimensional (2D) profiles are support in present version. © 2022 Elsevier B.V. 
650 0 4 |a Cold plasma dispersion relation 
650 0 4 |a Cold plasma dispersion relation 
650 0 4 |a Cold plasmas 
650 0 4 |a Cyclotrons 
650 0 4 |a Data transfer 
650 0 4 |a Dispersion relations 
650 0 4 |a Electromagnetic wave propagation in plasma 
650 0 4 |a Electron beams 
650 0 4 |a Geometry 
650 0 4 |a Kinetic energy 
650 0 4 |a Kinetic plasma dispersion relation 
650 0 4 |a Kinetic plasma dispersion relation 
650 0 4 |a Kinetic plasmas 
650 0 4 |a Kinetics 
650 0 4 |a Magnetic fields 
650 0 4 |a Magnetic mirrors 
650 0 4 |a Magnetoplasma 
650 0 4 |a MATLAB 
650 0 4 |a Mirror machine 
650 0 4 |a Mirrors 
650 0 4 |a Plasma density 
650 0 4 |a Plasma dispersion 
650 0 4 |a Plasma waves 
650 0 4 |a Plasma waves 
650 0 4 |a Quantum theory 
650 0 4 |a Ray tracing 
650 0 4 |a Ray tracing 
650 0 4 |a Ray-tracing codes 
650 0 4 |a Runge Kutta methods 
650 0 4 |a Tokamak devices 
700 1 |a Bai, Y.-K.  |e author 
700 1 |a Banerjee, D.  |e author 
700 1 |a Li, J.-C.  |e author 
700 1 |a Xie, H.-S.  |e author 
700 1 |a Zhao, H.-Y.  |e author 
773 |t Computer Physics Communications