Use of growing degree indicator for developing adaptive responses: A case study of cotton in Florida

Significant variabilities in planting and harvesting dates of crops have been observed throughout Florida in recent decades, indicating a change in their phenology. This study innovatively uses an agroecosystem indicator, growing degree days (GDD), to understand the change in cotton crop phenology t...

Full description

Bibliographic Details
Main Authors: Anandhi, A. (Author), Deepa, R. (Author), Johnson, E. (Author), Pryor, M. (Author), Sankar, S. (Author), Sharma, A. (Author), Stewart, B. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03982nam a2200577Ia 4500
001 10.1016-j.ecolind.2021.107383
008 220427s2021 CNT 000 0 und d
020 |a 1470160X (ISSN) 
245 1 0 |a Use of growing degree indicator for developing adaptive responses: A case study of cotton in Florida 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ecolind.2021.107383 
520 3 |a Significant variabilities in planting and harvesting dates of crops have been observed throughout Florida in recent decades, indicating a change in their phenology. This study innovatively uses an agroecosystem indicator, growing degree days (GDD), to understand the change in cotton crop phenology throughout the region and develop adaptation strategies using the Driver‐Pressure‐State‐Impact‐Response (DPSIR) framework. GDD is the amount of heat absorbed by the growing stages of cotton. It is computed from temperature simulations obtained from the 21 models participating in the Coupled Model Inter-comparison Project Phase 5 (CMIP5) for the historical (1950–2005) and future scenarios (Representative concentration pathway (RCP) 8.5, 2006–2100) at a spatial resolution of 0.125°x0.125°. The future projections from the 21 models show an increase in surface temperature ranging from 3.5 °C to 5.5 °C. Additionally, the variability in dates for the different phenological stages shows an early occurrence of the simulation's growth stages. Historically, the minimum and maximum ranges of trend shift towards the funnel's negative side in the RCP 8.5 scenarios. The trends are estimated for two time-periods during historical (1950–1975 and 1976–2005) and future (2006–2050 and 2015–2100) periods of time. They ranged from −3.5 to 3.4 days per decade and −3.6 to 0 (no change) days per decade, respectively, among the six stages namely: emergence stage, the appearance of the first square, the appearance of the first flower, peak blooming, first open boll, and defoliation. Warming accelerated plant growth and shortened the growing period, which is translated to develop adaptation strategies for a climate-resilient crop production system, using casual chain/loops and the DPSIR framework. Identifying the multiple adaptation strategies for levels of adaptation and degree of climate change and variability can be used by different stakeholders and policymakers as a guide for making decisions to adapt cotton to climate change better. Although this methodology is applied to the cotton crop in Florida, it can be used for other crops and regions of the world. © 2021 The Authors 
650 0 4 |a adaptation 
650 0 4 |a Adaptation and mitigation strategies 
650 0 4 |a Adaptation strategies 
650 0 4 |a agricultural ecosystem 
650 0 4 |a Biology 
650 0 4 |a Climate change 
650 0 4 |a Climate variability and change 
650 0 4 |a cotton 
650 0 4 |a Cotton 
650 0 4 |a Crop production systems 
650 0 4 |a Crops 
650 0 4 |a Cultivation 
650 0 4 |a decision making 
650 0 4 |a defoliation 
650 0 4 |a Driver-Pressure-State-Impact-Responses (DPSIR) framework 
650 0 4 |a Florida 
650 0 4 |a Florida [United States] 
650 0 4 |a Future projections 
650 0 4 |a Gossypium hirsutum 
650 0 4 |a Growing degree days 
650 0 4 |a harvesting 
650 0 4 |a Indicator indicator 
650 0 4 |a Multiple adaptation 
650 0 4 |a Phenological stages 
650 0 4 |a phenology 
650 0 4 |a Spatial resolution 
650 0 4 |a Surface temperatures 
650 0 4 |a Temperature change 
650 0 4 |a temperature profile 
650 0 4 |a Temperature simulations 
650 0 4 |a United States 
700 1 |a Anandhi, A.  |e author 
700 1 |a Deepa, R.  |e author 
700 1 |a Johnson, E.  |e author 
700 1 |a Pryor, M.  |e author 
700 1 |a Sankar, S.  |e author 
700 1 |a Sharma, A.  |e author 
700 1 |a Stewart, B.  |e author 
773 |t Ecological Indicators