Accounting for the fish condition in assessing the reproductivity of a marine eel to achieve fishery sustainability

Spawning potential ratio (SPR) is a commonly used biological reference point to inform management decisions; however, the fish reproductivity may vary substantially with different body conditions, and the variability has not been well understood. Here, we examined the maturity, fecundity, and SPR of...

Full description

Bibliographic Details
Main Authors: Ji, Y. (Author), Mu, X. (Author), Ren, Y. (Author), Xu, B. (Author), Xue, Y. (Author), Zhang, C. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
SPR
Online Access:View Fulltext in Publisher
LEADER 02740nam a2200517Ia 4500
001 10.1016-j.ecolind.2021.108116
008 220427s2021 CNT 000 0 und d
020 |a 1470160X (ISSN) 
245 1 0 |a Accounting for the fish condition in assessing the reproductivity of a marine eel to achieve fishery sustainability 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ecolind.2021.108116 
520 3 |a Spawning potential ratio (SPR) is a commonly used biological reference point to inform management decisions; however, the fish reproductivity may vary substantially with different body conditions, and the variability has not been well understood. Here, we examined the maturity, fecundity, and SPR of a marine eel Conger myriaster. The results showed that total fecundity increased with length and hepatosomatic indices (HSI), whereas relative fecundity (total fecundity/body weight) decreased with body weight, suggesting length- and condition-driven reproductive strategies. A length-structured per-recruit model was used to estimate SPR and examine the influence of HSI in resultant management decisions. Our results suggested that this stock was subject to a high risk of recruitment overfishing. Fish condition greatly influences the estimates of SPR-related reference points. For example, when HSI increased from 0.6% to 1.8%, F40% increased by 91%. In addition, using spawning stock biomass to calculate F40% could produce a bias of 23%. We highlight the need for monitoring the changes in fish fecundity and conditions in fisheries assessment, which may contribute to the robust management of data-poor fisheries. © 2021 The Author(s) 
650 0 4 |a biomass 
650 0 4 |a body condition 
650 0 4 |a Body condition 
650 0 4 |a Body condition 
650 0 4 |a Cong myriaster 
650 0 4 |a Conger myriaster 
650 0 4 |a Conger myriaster 
650 0 4 |a decision making 
650 0 4 |a Decision making 
650 0 4 |a Decision support systems 
650 0 4 |a fecundity 
650 0 4 |a Fecundity 
650 0 4 |a Fecundity 
650 0 4 |a Fish 
650 0 4 |a Fisheries 
650 0 4 |a Harvest restriction 
650 0 4 |a Harvest restriction 
650 0 4 |a Hepatosomatic indices 
650 0 4 |a recruitment (population dynamics) 
650 0 4 |a Reference points 
650 0 4 |a reproduction 
650 0 4 |a Reproductivity 
650 0 4 |a spawning 
650 0 4 |a Spawning potential ratio 
650 0 4 |a Spawnings 
650 0 4 |a SPR 
650 0 4 |a sustainability 
700 1 |a Ji, Y.  |e author 
700 1 |a Mu, X.  |e author 
700 1 |a Ren, Y.  |e author 
700 1 |a Xu, B.  |e author 
700 1 |a Xue, Y.  |e author 
700 1 |a Zhang, C.  |e author 
773 |t Ecological Indicators