Estimating chromium concentration in arable soil based on the optimal principal components by hyperspectral data

The heavy metal pollution in arable soil poses a significant threat to human health. Thus, it is of great significance to investigate the contamination of heavy metal elements in the soil. As the soil polluted by heavy metal is sensitive to spectral reflectance, thus the hyperspectral remote sensing...

Full description

Bibliographic Details
Main Authors: Guo, F. (Author), Li, K. (Author), Liu, F. (Author), Liu, X. (Author), Ma, H. (Author), Peng, M. (Author), Tang, S. (Author), Xu, Z. (Author), Yang, Z. (Author), Zhang, L. (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04026nam a2200649Ia 4500
001 10.1016-j.ecolind.2021.108400
008 220427s2021 CNT 000 0 und d
020 |a 1470160X (ISSN) 
245 1 0 |a Estimating chromium concentration in arable soil based on the optimal principal components by hyperspectral data 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ecolind.2021.108400 
520 3 |a The heavy metal pollution in arable soil poses a significant threat to human health. Thus, it is of great significance to investigate the contamination of heavy metal elements in the soil. As the soil polluted by heavy metal is sensitive to spectral reflectance, thus the hyperspectral remote sensing technology could be a valuable tool for retrieving heavy metal components in the soil. This study, taking chromium (Cr) concentration as an example, proposes an optimal model for estimating heavy metal components in the soil by comprehensively taking account of the spectral pretreatment, dimensionality reduction with optimal parameters, and hyperspectral model. To this end, both the linear model, i.e., partial least squares regression (PLSR), and the nonlinear model, i.e., the gradient boosting decision tree (GBDT), are applied in this study. It is found in the study area, the Savitzky-Golay (SG) method can be regarded as an excellent spectral pretreatment for the hyperspectral data regardless of the applied model. By contrast, the dimensionality reduction in terms of the Principal Component Analysis (PCA) is closely related to hyperspectral model: the optimal principal components (PCs) in the estimation of Cr concentration are the first 9 PCs for the GBDT (nonlinear model), while that for the PLSR (linear model) become the first 8 PCs. Moreover, the examination of hyperspectral model shows the GBDT model has slightly better performance than the PLSR model for the Cr concentration estimation under most conditions. Finally, when the spectral pretreatment, dimensionality reduction, and hyperspectral model are fully considered, the best retrieval model for the Cr concentration in the study area is the SG-PCA-GBDT model. Numeric measures of model accuracy show the proposed model has a determination coefficient of 0.80 and a residual prediction deviation of 2.04, which provides a potentially new method for estimating Cr concentration in the polluted soil. © 2021 
650 0 4 |a agricultural soil 
650 0 4 |a Agriculture 
650 0 4 |a arable land 
650 0 4 |a Chromium 
650 0 4 |a Chromium concentration 
650 0 4 |a concentration (composition) 
650 0 4 |a data set 
650 0 4 |a Decision trees 
650 0 4 |a estimation method 
650 0 4 |a Gradient boosting 
650 0 4 |a Gradient boosting decision tree 
650 0 4 |a Gradient boosting decision tree (GBDT) 
650 0 4 |a Health risks 
650 0 4 |a heavy metal 
650 0 4 |a Heavy metals 
650 0 4 |a Hyperspectral models 
650 0 4 |a Hyperspectral remote sensing technology 
650 0 4 |a Hyperspectral remote sensing technology 
650 0 4 |a Least squares approximations 
650 0 4 |a Linear regression 
650 0 4 |a Nonlinear systems 
650 0 4 |a Optimal principal component 
650 0 4 |a Optimal principal components 
650 0 4 |a Partial least square regression 
650 0 4 |a Partial least squares regression (PLSR) 
650 0 4 |a Principal component analysis 
650 0 4 |a Principal Components 
650 0 4 |a remote sensing 
650 0 4 |a Remote sensing 
650 0 4 |a Soil chromium 
650 0 4 |a Soil chromium 
650 0 4 |a soil pollution 
650 0 4 |a Soil pollution 
650 0 4 |a Soils 
700 1 |a Guo, F.  |e author 
700 1 |a Li, K.  |e author 
700 1 |a Liu, F.  |e author 
700 1 |a Liu, X.  |e author 
700 1 |a Ma, H.  |e author 
700 1 |a Peng, M.  |e author 
700 1 |a Tang, S.  |e author 
700 1 |a Xu, Z.  |e author 
700 1 |a Yang, Z.  |e author 
700 1 |a Zhang, L.  |e author 
773 |t Ecological Indicators