Estimation of the mechanical behavior of CFRP-to-steel bonded joints with quantification of uncertainty

The strengthening and repair of existing infrastructures, a large portion of which is comprised of steel structures, is essential for sustainable material use and energy resource management. Bonded strengthening using Carbon Fiber Reinforced Polymers (CFRPs) offers great potential toward a sustainab...

Full description

Bibliographic Details
Main Authors: Chatzi, E. (Author), Ghafoori, E. (Author), Li, L. (Author), Pichler, N. (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02800nam a2200469Ia 4500
001 10.1016-j.engstruct.2022.114573
008 220718s2022 CNT 000 0 und d
020 |a 01410296 (ISSN) 
245 1 0 |a Estimation of the mechanical behavior of CFRP-to-steel bonded joints with quantification of uncertainty 
260 0 |b Elsevier Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.engstruct.2022.114573 
520 3 |a The strengthening and repair of existing infrastructures, a large portion of which is comprised of steel structures, is essential for sustainable material use and energy resource management. Bonded strengthening using Carbon Fiber Reinforced Polymers (CFRPs) offers great potential toward a sustainable infrastructure management. In establishing CFRP retrofitting as a reliable solution for steel strengthening, a solid understanding of the mechanical behavior of the CFRP-to-steel bonded joints is essential. Given the variability in the evidence attained by experiments, in this study, we tackle this challenge from an uncertainty quantification perspective by proposing a model based on Polynomial Chaos Expansion (PCE) to predict the load capacity of the bonded joints. A stochastic bond–slip model, featuring a parsimonious representation with one deterministic coefficient and one probabilistic coefficient, is further proposed. A Monte-Carlo (MC) simulation is used to demonstrate the efficacy of the bond–slip model in predicting the mechanical behavior such as load–displacement behavior, shear stress profile, and effective bond length of strengthened specimens. Results are compared with existing deterministic models. © 2022 The Author(s) 
650 0 4 |a Bond capacity 
650 0 4 |a Bond length 
650 0 4 |a Bond–slip model 
650 0 4 |a Bond-slip models 
650 0 4 |a Carbon fiber reinforced plastics 
650 0 4 |a Carbon fiber reinforced polymer 
650 0 4 |a Carbon fiber reinforced polymer (CFRP) 
650 0 4 |a Carbon fibre reinforced polymer 
650 0 4 |a Chaos expansions 
650 0 4 |a Data-driven analysis 
650 0 4 |a Effective bond length 
650 0 4 |a Energy management 
650 0 4 |a Expansion 
650 0 4 |a Monte Carlo methods 
650 0 4 |a Monte Carlo's simulation 
650 0 4 |a Monte–Carlo (MC) simulation 
650 0 4 |a Polynomial chaos 
650 0 4 |a Polynomial chaos expansion 
650 0 4 |a Polynomial chaos expansion (PCE) 
650 0 4 |a Shear stress 
650 0 4 |a Stochastic models 
650 0 4 |a Stochastic systems 
650 0 4 |a Strengthening (metal) 
650 0 4 |a Stress analysis 
650 0 4 |a Uncertainty analysis 
700 1 |a Chatzi, E.  |e author 
700 1 |a Ghafoori, E.  |e author 
700 1 |a Li, L.  |e author 
700 1 |a Pichler, N.  |e author 
773 |t Engineering Structures