Anti-infective activities of 11 plants species used in traditional medicine in Malaysia

Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically importan...

Full description

Bibliographic Details
Main Authors: Aminudin, N. (Author), Butler, M.S (Author), Hazra, B. (Author), Hossan, M.S (Author), Ismail, N.H (Author), Jin, K.T (Author), Jindal, H.M (Author), Mahboob, T. (Author), Mohd Abd Razak, M.R (Author), Nissapatorn, V. (Author), Nor Azman, N.S (Author), Pandey, R.K (Author), Prajapati, V.K (Author), Prommana, P. (Author), Rahmatullah, M. (Author), Raju, C.S (Author), Shaari, K. (Author), Uthaipibull, C. (Author), Wiart, C. (Author), Zarubaev, V.V (Author)
Format: Article
Language:English
Published: Academic Press Inc. 2018
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 07381nam a2201789Ia 4500
001 10.1016-j.exppara.2018.09.020
008 220120s2018 CNT 000 0 und d
020 |a 00144894 (ISSN) 
245 1 0 |a Anti-infective activities of 11 plants species used in traditional medicine in Malaysia 
260 0 |b Academic Press Inc.  |c 2018 
490 1 |t Experimental Parasitology 
650 0 4 |a Amomum subulatum 
650 0 4 |a Amomum subulatum extract 
650 0 4 |a Antibacterial 
650 0 4 |a antibacterial activity 
650 0 4 |a antiinfective agent 
650 0 4 |a Anti-Infective Agents 
650 0 4 |a Antileishmanial 
650 0 4 |a antileishmanial activity 
650 0 4 |a Antimalarial 
650 0 4 |a antimicrobial activity 
650 0 4 |a antiplasmodial activity 
650 0 4 |a Antiviral 
650 0 4 |a antiviral activity 
650 0 4 |a Apocynaceae 
650 0 4 |a Article 
650 0 4 |a beta amyrin 
650 0 4 |a cefotaxime 
650 0 4 |a cell line 
650 0 4 |a Cell Line 
650 0 4 |a chemistry 
650 0 4 |a Chilocarpus costatus 
650 0 4 |a Chilocarpus costatus extract 
650 0 4 |a chloroform 
650 0 4 |a chloroquine 
650 0 4 |a chloroquine resistant Plasmodium falciparum K1 
650 0 4 |a controlled study 
650 0 4 |a Coxsackievirus B3 
650 0 4 |a Curcuma aeruginosa 
650 0 4 |a Curcuma aeruginosa extract 
650 0 4 |a dihydroartemisinin 
650 0 4 |a drug cytotoxicity 
650 0 4 |a drug effect 
650 0 4 |a drug potentiation 
650 0 4 |a Drug Synergism 
650 0 4 |a Embelia ribes 
650 0 4 |a Embelia ribes extract 
650 0 4 |a Enterococcus faecalis 
650 0 4 |a Enterovirus B 
650 0 4 |a Enterovirus B, Human 
650 0 4 |a enzyme linked immunosorbent assay 
650 0 4 |a epigallocatechin 
650 0 4 |a Eryngium foetidum 
650 0 4 |a Eryngium foetidum extract 
650 0 4 |a Escherichia coli 
650 0 4 |a ethnopharmacology 
650 0 4 |a Ethnopharmacology 
650 0 4 |a ferrudiol 
650 0 4 |a fractional inhibitory concentration index 
650 0 4 |a fruit 
650 0 4 |a furan derivative 
650 0 4 |a furanodienone 
650 0 4 |a Furans 
650 0 4 |a Garcinia atroviridis 
650 0 4 |a Garcinia atroviridis extract 
650 0 4 |a Gram negative bacterium 
650 0 4 |a Gram positive bacterium 
650 0 4 |a Gram-Negative Bacteria 
650 0 4 |a Gram-Positive Bacteria 
650 0 4 |a high performance liquid chromatography 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a IC50 
650 0 4 |a Influenza A virus (A/Puerto Rico/8/1934(H1N1)) 
650 0 4 |a Influenza A virus (H1N1) 
650 0 4 |a Influenza A Virus, H1N1 Subtype 
650 0 4 |a Inhibitory Concentration 50 
650 0 4 |a isolation and purification 
650 0 4 |a Klebsiella pneumoniae 
650 0 4 |a Leishmania donovani 
650 0 4 |a leuconolam 
650 0 4 |a Leuconotis eugenifolius 
650 0 4 |a Leuconotis eugenifolius extract 
650 0 4 |a lignan 
650 0 4 |a Lignans 
650 0 4 |a Malaysia 
650 0 4 |a medicinal plant 
650 0 4 |a Medicinal plants 
650 0 4 |a Medicine, East Asian Traditional 
650 0 4 |a methicillin resistant Staphylococcus aureus 
650 0 4 |a miltefosine 
650 0 4 |a minimum inhibitory concentration 
650 0 4 |a MRC-5 cell line 
650 0 4 |a MTT assay 
650 0 4 |a natural product 
650 0 4 |a Natural products 
650 0 4 |a nonhuman 
650 0 4 |a Ocimum americanum 
650 0 4 |a Ocimum americanum extract 
650 0 4 |a oriental medicine 
650 0 4 |a pinoresinol 
650 0 4 |a Piper longum 
650 0 4 |a Piper longum extract 
650 0 4 |a plant extract 
650 0 4 |a Plant Extracts 
650 0 4 |a plant leaf 
650 0 4 |a plant stem 
650 0 4 |a Plants, Medicinal 
650 0 4 |a Plasmodium falciparum 
650 0 4 |a priority journal 
650 0 4 |a procedures 
650 0 4 |a Pseudomonas aeruginosa 
650 0 4 |a rhizome 
650 0 4 |a rifampicin 
650 0 4 |a sesquiterpene 
650 0 4 |a Sesquiterpenes 
650 0 4 |a Staphylococcus aureus 
650 0 4 |a Staphylococcus epidermidis 
650 0 4 |a Tabernaemontana 
650 0 4 |a Tabernaemontana peduncularis 
650 0 4 |a Tabernaemontana peduncularis extract 
650 0 4 |a unclassified drug 
650 0 4 |a Uvaria 
650 0 4 |a Uvaria grandiflora 
650 0 4 |a Uvaria grandiflora extract 
650 0 4 |a vancomycin 
650 0 4 |a vincristine 
650 0 4 |a zeylenol 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.exppara.2018.09.020 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055615680&doi=10.1016%2fj.exppara.2018.09.020&partnerID=40&md5=cb2d042b23d620a94ba357061b554298 
520 3 |a Treatment of drug resistant protozoa, bacteria, and viruses requires new drugs with alternative chemotypes. Such compounds could be found from Southeast Asian medicinal plants. The present study examines the cytotoxic, antileishmanial, and antiplasmodial effects of 11 ethnopharmacologically important plant species in Malaysia. Chloroform extracts were tested for their toxicity against MRC-5 cells and Leishmania donovani by MTT, and chloroquine-resistant Plasmodium falciparum K1 strain by Histidine-Rich Protein II ELISA assays. None of the extract tested was cytotoxic to MRC-5 cells. Extracts of Uvaria grandiflora, Chilocarpus costatus, Tabernaemontana peduncularis, and Leuconotis eugenifolius had good activities against L. donovani with IC50 < 50 μg/mL. Extracts of U. grandiflora, C. costatus, T. peduncularis, L. eugenifolius, A. subulatum, and C. aeruginosa had good activities against P. falciparum K1 with IC50 < 10 μg/mL. Pinoresinol isolated from C. costatus was inactive against L. donovani and P. falciparum. C. costatus extract and pinoresinol increased the sensitivity of Staphylococcus epidermidis to cefotaxime. Pinoresinol demonstrated moderate activity against influenza virus (IC50 = 30.4 ± 11 μg/mL) and was active against Coxsackie virus B3 (IC50 = 7.1 ± 3.0 μg/mL). β-Amyrin from L. eugenifolius inhibited L. donovani with IC50 value of 15.4 ± 0.01 μM. Furanodienone from C. aeruginosa inhibited L. donovani and P. falciparum K1 with IC50 value of 39.5 ± 0.2 and 17.0 ± 0.05 μM, respectively. Furanodienone also inhibited the replication of influenza and Coxsackie virus B3 with IC50 value of 4.0 ± 0.5 and 7.2 ± 1.4 μg/mL (Ribavirin: IC50: 15.6 ± 2.0 μg/mL), respectively. Our study provides evidence that medicinal plants in Malaysia have potentials as a source of chemotypes for the development of anti-infective leads. © 2018 Elsevier Inc. 
700 1 0 |a Aminudin, N.  |e author 
700 1 0 |a Butler, M.S.  |e author 
700 1 0 |a Hazra, B.  |e author 
700 1 0 |a Hossan, M.S.  |e author 
700 1 0 |a Ismail, N.H.  |e author 
700 1 0 |a Jin, K.T.  |e author 
700 1 0 |a Jindal, H.M.  |e author 
700 1 0 |a Mahboob, T.  |e author 
700 1 0 |a Mohd Abd Razak, M.R.  |e author 
700 1 0 |a Nissapatorn, V.  |e author 
700 1 0 |a Nor Azman, N.S.  |e author 
700 1 0 |a Pandey, R.K.  |e author 
700 1 0 |a Prajapati, V.K.  |e author 
700 1 0 |a Prommana, P.  |e author 
700 1 0 |a Rahmatullah, M.  |e author 
700 1 0 |a Raju, C.S.  |e author 
700 1 0 |a Shaari, K.  |e author 
700 1 0 |a Uthaipibull, C.  |e author 
700 1 0 |a Wiart, C.  |e author 
700 1 0 |a Zarubaev, V.V.  |e author 
773 |t Experimental Parasitology