Isolation and modification of nano-scale cellulose from organosolv-treated birch through the synergistic activity of LPMO and endoglucanases

Nanocellulose isolation from lignocellulose is a tedious and expensive process with high energy and harsh chemical requirements, primarily due to the recalcitrance of the substrate, which otherwise would have been cost-effective due to its abundance. Replacing the chemical steps with biocatalytic pr...

Full description

Bibliographic Details
Main Authors: Christakopoulos, P. (Author), Karnaouri, A. (Author), Liu, B. (Author), Mathew, A.P (Author), Matsakas, L. (Author), Muraleedharan, M.N (Author), Piatkova, M. (Author), Rova, U. (Author), Ruiz-Caldas, M.-X (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04007nam a2200949Ia 4500
001 10.1016-j.ijbiomac.2021.04.136
008 220427s2021 CNT 000 0 und d
020 |a 01418130 (ISSN) 
245 1 0 |a Isolation and modification of nano-scale cellulose from organosolv-treated birch through the synergistic activity of LPMO and endoglucanases 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ijbiomac.2021.04.136 
520 3 |a Nanocellulose isolation from lignocellulose is a tedious and expensive process with high energy and harsh chemical requirements, primarily due to the recalcitrance of the substrate, which otherwise would have been cost-effective due to its abundance. Replacing the chemical steps with biocatalytic processes offers opportunities to solve this bottleneck to a certain extent due to the enzymes substrate specificity and mild reaction chemistry. In this work, we demonstrate the isolation of sulphate-free nanocellulose from organosolv pretreated birch biomass using different glycosyl-hydrolases, along with accessory oxidative enzymes including a lytic polysaccharide monooxygenase (LPMO). The suggested process produced colloidal nanocellulose suspensions (ζ-potential −19.4 mV) with particles of 7–20 nm diameter, high carboxylate content and improved thermostability (To = 301 °C, Tmax = 337 °C). Nanocelluloses were subjected to post-modification using LPMOs of different regioselectivity. The sample from chemical route was the least favorable for LPMO to enhance the carboxylate content, while that from the C1-specific LPMO treatment showed the highest increase in carboxylate content. © 2021 
650 0 4 |a Article 
650 0 4 |a atomic force microscopy 
650 0 4 |a Betula 
650 0 4 |a Betula pendula 
650 0 4 |a biomass 
650 0 4 |a Biomass 
650 0 4 |a birch 
650 0 4 |a budding yeast 
650 0 4 |a carboxylic acid 
650 0 4 |a cellulase 
650 0 4 |a Cellulase 
650 0 4 |a cellulose 
650 0 4 |a Cellulose 
650 0 4 |a controlled study 
650 0 4 |a enzyme specificity 
650 0 4 |a enzymology 
650 0 4 |a genetics 
650 0 4 |a glucan synthase 
650 0 4 |a hydrolysis 
650 0 4 |a Hydrolysis 
650 0 4 |a hydrophobic interaction chromatography 
650 0 4 |a isolation and purification 
650 0 4 |a Komagataella pastoris 
650 0 4 |a laccase 
650 0 4 |a Laccase 
650 0 4 |a lignin 
650 0 4 |a Lignin 
650 0 4 |a lignocellulose 
650 0 4 |a LPMO biocatalysis 
650 0 4 |a lytic polysaccharide monooxygenase 
650 0 4 |a metabolism 
650 0 4 |a mixed function oxidase 
650 0 4 |a Mixed Function Oxygenases 
650 0 4 |a molecular cloning 
650 0 4 |a Myceliophthora thermophila 
650 0 4 |a nanocellulose 
650 0 4 |a Nanocellulose 
650 0 4 |a nanofiber 
650 0 4 |a Nanofibers 
650 0 4 |a nonhuman 
650 0 4 |a organic solvent 
650 0 4 |a organosolv 
650 0 4 |a Phanerochaete 
650 0 4 |a Phanerochaete 
650 0 4 |a Post-treatment modification/functionalization 
650 0 4 |a regioselectivity 
650 0 4 |a Saccharomycetales 
650 0 4 |a scanning electron microscopy 
650 0 4 |a Sordariales 
650 0 4 |a Sordariales 
650 0 4 |a Substrate Specificity 
650 0 4 |a suspension 
650 0 4 |a thermogravimetry 
650 0 4 |a thermostability 
650 0 4 |a unclassified drug 
650 0 4 |a unspecific monooxygenase 
650 0 4 |a X ray photoemission spectroscopy 
650 0 4 |a xylan 1,4 beta xylosidase 
650 0 4 |a Xylosidases 
650 0 4 |a zeta potential 
700 1 |a Christakopoulos, P.  |e author 
700 1 |a Karnaouri, A.  |e author 
700 1 |a Liu, B.  |e author 
700 1 |a Mathew, A.P.  |e author 
700 1 |a Matsakas, L.  |e author 
700 1 |a Muraleedharan, M.N.  |e author 
700 1 |a Piatkova, M.  |e author 
700 1 |a Rova, U.  |e author 
700 1 |a Ruiz-Caldas, M.-X.  |e author 
773 |t International Journal of Biological Macromolecules