The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues

Forisomes are giant polyprotein complexes that undergo reversible conformational rearrangements from a spindle-like to a plug-like state in response to Ca2+ or changes in pH. They act as valves in the plant vasculature, and reproduce this function in vitro to regulate flow in microfluidic capillarie...

Full description

Bibliographic Details
Main Authors: Eirich, J. (Author), Finkemeier, I. (Author), Giese, J. (Author), Groscurth, S. (Author), Müller, B. (Author), Noll, G.A (Author), Prüfer, D. (Author), Rose, J. (Author), Twyman, R.M (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02795nam a2200445Ia 4500
001 10.1016-j.ijbiomac.2021.10.192
008 220427s2021 CNT 000 0 und d
020 |a 01418130 (ISSN) 
245 1 0 |a The functionality of plant mechanoproteins (forisomes) is dependent on the dual role of conserved cysteine residues 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ijbiomac.2021.10.192 
520 3 |a Forisomes are giant polyprotein complexes that undergo reversible conformational rearrangements from a spindle-like to a plug-like state in response to Ca2+ or changes in pH. They act as valves in the plant vasculature, and reproduce this function in vitro to regulate flow in microfluidic capillaries controlled by electro-titration. Heterologous expression in yeast or plants allows the large-scale production of tailor-made artificial forisomes for technical applications. Here we investigated the unexpected disintegration of artificial forisomes in response to Ca2+ following the deletion of the M1 motif in the MtSEO-F1 protein or the replacement of all four conserved cysteine residues therein. This phenomenon could be mimicked in wild-type forisomes under reducing conditions by adding a thiol alkylating agent. We propose a model in which reversible changes in forisome structure depend on cysteine residues with ambiguous redox states, allowing the formation of intermolecular disulfide bridges (confirmed by mass spectrometry) as well as noncovalent thiol interactions to connect forisome substructures in the dispersed state. This is facilitated by the projection of the M1 motif from the MtSEO-F1 protein as part of an extended loop. Our findings support the rational engineering of disintegrating forisomes to control the release of peptides or enzymes in microfluidic systems. © 2021 The Authors 
650 0 4 |a alkylating agent 
650 0 4 |a Alkylating Agents 
650 0 4 |a Artificial forisome 
650 0 4 |a chemistry 
650 0 4 |a cysteine 
650 0 4 |a Cysteine 
650 0 4 |a disulfide 
650 0 4 |a Disulfide bridge 
650 0 4 |a Disulfides 
650 0 4 |a oxidation reduction reaction 
650 0 4 |a Oxidation-Reduction 
650 0 4 |a plant 
650 0 4 |a plant protein 
650 0 4 |a Plant Proteins 
650 0 4 |a Plants 
650 0 4 |a Polymer disintegration 
650 0 4 |a Sulfhydryl Compounds 
650 0 4 |a thiol derivative 
700 1 |a Eirich, J.  |e author 
700 1 |a Finkemeier, I.  |e author 
700 1 |a Giese, J.  |e author 
700 1 |a Groscurth, S.  |e author 
700 1 |a Müller, B.  |e author 
700 1 |a Noll, G.A.  |e author 
700 1 |a Prüfer, D.  |e author 
700 1 |a Rose, J.  |e author 
700 1 |a Twyman, R.M.  |e author 
773 |t International Journal of Biological Macromolecules