Finite-size effects on heat and mass transfer in porous electrodes

In thin electrode applications, as the ratio of the obstacle size with respect to the system size increases, issues such as finite-size effects become more influential in the transport of heat and mass within a porous structure. This study presents a numerical approach to evaluate the finite-size ef...

Full description

Bibliographic Details
Main Authors: Astaneh, M. (Author), Maggiolo, D. (Author), Ström, H. (Author)
Format: Article
Language:English
Published: Elsevier Masson s.r.l. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03014nam a2200409Ia 4500
001 10.1016-j.ijthermalsci.2022.107610
008 220510s2022 CNT 000 0 und d
020 |a 12900729 (ISSN) 
020 |a https://www.scopus.com/inward/record.uri?eid=2-s2.0-85128670399&doi=10.1016%2fj.ijthermalsci.2022.107610&partnerID=40&md5=d42cb26595213eb47fde8b239b2b8d60 
245 1 0 |a Finite-size effects on heat and mass transfer in porous electrodes 
260 0 |b Elsevier Masson s.r.l.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ijthermalsci.2022.107610 
520 3 |a In thin electrode applications, as the ratio of the obstacle size with respect to the system size increases, issues such as finite-size effects become more influential in the transport of heat and mass within a porous structure. This study presents a numerical approach to evaluate the finite-size effects on the heat and mass transfer in porous electrodes. In particular, numerical simulations based on the lattice Boltzmann method (LBM) are employed to analyze the pore-scale transport phenomena. Analyzing the results at both the electrode level and the pore level shows that the mass transfer performance is more influenced by the finite-size effects compared to the transfer of heat. The numerical simulations show that as the parameter m being the ratio of the electrode thickness to the particle diameter is halved, the effective diffusivity increases by 20% while the effective conductivity remains unchanged. We propose a novel analytical tortuosity–porosity (τ−ϕ) correlation as τ=[1−(1−ϕ)m+1]/ϕ where the finite-size effects are taken into account via the parameter m. Besides, particles of small size provide more uniform distributions of temperature and concentration within the porous structure with standard deviations of approximately half of the values obtained from the case made up of large particles. Our findings at the electrode level are compared with the commonly used macroscopic porosity-dependent correlations found in the literature. At the end, by performing a systematic assessment, we provide guidelines for efficient design of porous electrodes. © 2022 The Authors 
650 0 4 |a Electrodes 
650 0 4 |a Finite size effect 
650 0 4 |a Finite-size effects 
650 0 4 |a Heat and mass transfer 
650 0 4 |a Heat transfer 
650 0 4 |a Lattice Boltzmann method 
650 0 4 |a Lithium-ion batteries 
650 0 4 |a Lithium-ion battery 
650 0 4 |a Mass transfer 
650 0 4 |a Numerical approaches 
650 0 4 |a Numerical methods 
650 0 4 |a Numerical models 
650 0 4 |a Particle size analysis 
650 0 4 |a Pore scale 
650 0 4 |a Porosity 
650 0 4 |a Porous electrodes 
650 0 4 |a Porous structures 
650 0 4 |a System size 
650 0 4 |a Thin electrode 
650 0 4 |a Transport of heat 
700 1 |a Astaneh, M.  |e author 
700 1 |a Maggiolo, D.  |e author 
700 1 |a Ström, H.  |e author 
773 |t International Journal of Thermal Sciences